1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
The dynamics of hybrid metabolic-genetic oscillators
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/23/1/10.1063/1.4793573
1.
1. U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits, Chapman & Hall/CRC Mathematical and Computational Biology (Chapman and Hall/CRC, 2006).
2.
2. K. J. Astrom and R. M. Murray, Feedback Systems: An Introduction for Scientists and Engineers (Princeton University Press, 2008).
3.
3. A. Bar-Even, E. Noor, Y. Savir, W. Liebermeister, D. Davidi, D. S Tawfik, and R. Milo, “ The moderately efficient enzyme: Evolutionary and physicochemical trends shaping enzyme parameters,” Biochemistry 50(21 ), 44024410 (2011).
http://dx.doi.org/10.1021/bi2002289
4.
4. K. A. Dill, K. Ghosh, and J. D. Schmit, “ Physical limits of cells and proteomes,” Proc. Natl. Acad. Sci. U.S.A. 108(44 ), 1787617882 (2011).
http://dx.doi.org/10.1073/pnas.1114477108
5.
5. E. J. Doedel, A. R. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Paffenroth, B. Sandstede, X. Wang, and C. Zhang, “Auto-07p: Continuation and bifurcation software for ordinary differential equations,” (2007).
6.
6. M. B. Elowitz and S. Leibler, “ A synthetic oscillatory network of transcriptional regulators,” Nature 403(6767 ), 335338 (2000).
http://dx.doi.org/10.1038/35002125
7.
7. D. A. Fell, “ Metabolic control analysis: A survey of its theoretical and experimental development,” Biochem. J. 286(Pt 2 ), 313330 (1992).
8.
8. E. Fung, W. W. Wong, J. K. Suen, T. Bulter, S.-g. Lee, and J. C. Liao, “ A synthetic gene-metabolic oscillator,” Nature 435(7038 ), 118122 (2005).
http://dx.doi.org/10.1038/nature03508
9.
9. T. S. Gardner, C. R. Cantor, and J. J. Collins, “ Construction of a genetic toggle switch in Escherichia coli,” Nature 403(6767 ), 339342 (2000).
http://dx.doi.org/10.1038/35002131
10.
10. E. Gehrmann, C. Gläßer, Y. Jin, B. Sendhoff, B. Drossel, and K. Hamacher, “ Robustness of glycolysis in yeast to internal and external noise,” Phys. Rev. E 84(2 ), 021913 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.021913
11.
11. D. Girbig, J. Selbig, and S. Grimbs, “ A MATLAB toolbox for structural kinetic modeling,” in Bioinformatics (Oxford, England, 2012).
12.
12. S. Grimbs, J. Selbig, S. Bulik, H.-G. Holzhutter, and R. Steuer, “ The stability and robustness of metabolic states: Identifying stabilizing sites in metabolic networks,” Mol. Syst. Biol. 3, Article No. 146 (2007).
http://dx.doi.org/10.1038/msb4100186
13.
13. T. Gross and U. Feudel, “ Generalized models as a universal approach to the analysis of nonlinear dynamical systems,” Phys. Rev. E 73, 016205016214 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.016205
14.
14. T. Gross, L. Rudolf, S. A. Levin, and U. Dieckmann, “ Generalized models reveal stabilizing factors in food webs,” Science 325(5941 ), 747750 (2009).
http://dx.doi.org/10.1126/science.1173536
15.
15. M. Heinemann and U. Sauer, “ Systems biology of microbial metabolism.” Curr. Opin. Microbiol. 13(3 ), 337343 (2010).
http://dx.doi.org/10.1016/j.mib.2010.02.005
16.
16. E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (MIT, 2006).
17.
17. N. Jamshidi and B. ØPalsson, “ Formulating genome-scale kinetic models in the post-genome era,” Mol. Syst. Biol. 4, Article No. 171 (2008).
http://dx.doi.org/10.1038/msb.2008.8
18.
18. E. Klipp, “ Timing matters,” FEBS Lett. 583(24 ), 40134018 (2009).
http://dx.doi.org/10.1016/j.febslet.2009.11.065
19.
19. J. D. Orth, I. Thiele, and B. ØPalsson, “ What is flux balance analysis?Nat. Biotechnol. 28(3 ), 245248 (2010).
http://dx.doi.org/10.1038/nbt.1614
20.
20. J. A. Papin, T. Hunter, B. O. Palsson, and S. Subramaniam, “ Reconstruction of cellular signalling networks and analysis of their properties,” Nat. Rev. Mol. Cell Biol. 6(2 ), 99111 (2005).
http://dx.doi.org/10.1038/nrm1570
21.
21. F. Picard, C. Dressaire, L. Girbal, and M. Cocaign-Bousquet, “ Examination of post-transcriptional regulations in prokaryotes by integrative biology,” C. R. Biol. 332(11 ), 958973 (2009).
http://dx.doi.org/10.1016/j.crvi.2009.09.005
22.
22. O. Purcell, N. J. Savery, C. S. Grierson, and M. di Bernardo, “ A comparative analysis of synthetic genetic oscillators,” J. R. Soc. Interface 7(52 ), 15031524 (2010).
http://dx.doi.org/10.1098/rsif.2010.0183
23.
23. E. Reznik and D. Segrè, “ On the stability of metabolic cycles,” J. Theor. Biol. 266(4 ), 536549 (2010).
http://dx.doi.org/10.1016/j.jtbi.2010.07.023
24.
24. B. Schwanhäusser, D. Busse, Na. Li, G. Dittmar, J. Schuchhardt, J. Wolf, W. Chen, and M. Selbach, “ Global quantification of mammalian gene expression control,” Nature 473(7347 ), 337342 (2011).
http://dx.doi.org/10.1038/nature10098
25.
25. R. Steuer, T. Gross, J. Selbig, and B. Blasius, “ Structural kinetic modeling of metabolic networks,” Proc. Natl. Acad. Sci. U.S.A. 103, 1186811873 (2006).
http://dx.doi.org/10.1073/pnas.0600013103
26.
26. R. Steuer, A. Nunes Nesi, A. R. Fernie, T. Gross, B. Blasius, and J. Selbig, “ From structure to dynamics of metabolic pathways: Applications to the plant mitochondrial TCA cycle,” Bioinformatics 23, 13781385 (2007).
http://dx.doi.org/10.1093/bioinformatics/btm065
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/1/10.1063/1.4793573
Loading
/content/aip/journal/chaos/23/1/10.1063/1.4793573
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/23/1/10.1063/1.4793573
2013-03-01
2014-10-31

Abstract

The synthetic construction of intracellular circuits is frequently hindered by a poor knowledge of appropriate kinetics and precise rate parameters. Here, we use generalized modeling (GM) to study the dynamical behavior of topological models of a family of hybrid metabolic-genetic circuits known as “metabolators.” Under mild assumptions on the kinetics, we use GM to analytically prove that all explicit kinetic models which are topologically analogous to one such circuit, the “core metabolator,” cannot undergo Hopf bifurcations. Then, we examine more detailed models of the metabolator. Inspired by the experimental observation of a Hopf bifurcation in a synthetically constructed circuit related to the core metabolator, we apply GM to identify the critical components of the synthetically constructed metabolator which must be reintroduced in order to recover the Hopf bifurcation. Next, we study the dynamics of a re-wired version of the core metabolator, dubbed the “reverse” metabolator, and show that it exhibits a substantially richer set of dynamical behaviors, including both local and global oscillations. Prompted by the observation of relaxation oscillations in the reverse metabolator, we study the role that a separation of genetic and metabolic time scales may play in its dynamics, and find that widely separated time scales promote stability in the circuit. Our results illustrate a generic pipeline for vetting the potential success of a circuit design, simply by studying the dynamics of the corresponding generalized model.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/23/1/1.4793573.html;jsessionid=1op27lgfiu77t.x-aip-live-06?itemId=/content/aip/journal/chaos/23/1/10.1063/1.4793573&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The dynamics of hybrid metabolic-genetic oscillators
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/1/10.1063/1.4793573
10.1063/1.4793573
SEARCH_EXPAND_ITEM