Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits, Chapman & Hall/CRC Mathematical and Computational Biology (Chapman and Hall/CRC, 2006).
2. K. J. Astrom and R. M. Murray, Feedback Systems: An Introduction for Scientists and Engineers (Princeton University Press, 2008).
3. A. Bar-Even, E. Noor, Y. Savir, W. Liebermeister, D. Davidi, D. S Tawfik, and R. Milo, “ The moderately efficient enzyme: Evolutionary and physicochemical trends shaping enzyme parameters,” Biochemistry 50(21 ), 44024410 (2011).
4. K. A. Dill, K. Ghosh, and J. D. Schmit, “ Physical limits of cells and proteomes,” Proc. Natl. Acad. Sci. U.S.A. 108(44 ), 1787617882 (2011).
5. E. J. Doedel, A. R. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Paffenroth, B. Sandstede, X. Wang, and C. Zhang, “Auto-07p: Continuation and bifurcation software for ordinary differential equations,” (2007).
6. M. B. Elowitz and S. Leibler, “ A synthetic oscillatory network of transcriptional regulators,” Nature 403(6767 ), 335338 (2000).
7. D. A. Fell, “ Metabolic control analysis: A survey of its theoretical and experimental development,” Biochem. J. 286(Pt 2 ), 313330 (1992).
8. E. Fung, W. W. Wong, J. K. Suen, T. Bulter, S.-g. Lee, and J. C. Liao, “ A synthetic gene-metabolic oscillator,” Nature 435(7038 ), 118122 (2005).
9. T. S. Gardner, C. R. Cantor, and J. J. Collins, “ Construction of a genetic toggle switch in Escherichia coli,” Nature 403(6767 ), 339342 (2000).
10. E. Gehrmann, C. Gläßer, Y. Jin, B. Sendhoff, B. Drossel, and K. Hamacher, “ Robustness of glycolysis in yeast to internal and external noise,” Phys. Rev. E 84(2 ), 021913 (2011).
11. D. Girbig, J. Selbig, and S. Grimbs, “ A MATLAB toolbox for structural kinetic modeling,” in Bioinformatics (Oxford, England, 2012).
12. S. Grimbs, J. Selbig, S. Bulik, H.-G. Holzhutter, and R. Steuer, “ The stability and robustness of metabolic states: Identifying stabilizing sites in metabolic networks,” Mol. Syst. Biol. 3, Article No. 146 (2007).
13. T. Gross and U. Feudel, “ Generalized models as a universal approach to the analysis of nonlinear dynamical systems,” Phys. Rev. E 73, 016205016214 (2006).
14. T. Gross, L. Rudolf, S. A. Levin, and U. Dieckmann, “ Generalized models reveal stabilizing factors in food webs,” Science 325(5941 ), 747750 (2009).
15. M. Heinemann and U. Sauer, “ Systems biology of microbial metabolism.” Curr. Opin. Microbiol. 13(3 ), 337343 (2010).
16. E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (MIT, 2006).
17. N. Jamshidi and B. ØPalsson, “ Formulating genome-scale kinetic models in the post-genome era,” Mol. Syst. Biol. 4, Article No. 171 (2008).
18. E. Klipp, “ Timing matters,” FEBS Lett. 583(24 ), 40134018 (2009).
19. J. D. Orth, I. Thiele, and B. ØPalsson, “ What is flux balance analysis?Nat. Biotechnol. 28(3 ), 245248 (2010).
20. J. A. Papin, T. Hunter, B. O. Palsson, and S. Subramaniam, “ Reconstruction of cellular signalling networks and analysis of their properties,” Nat. Rev. Mol. Cell Biol. 6(2 ), 99111 (2005).
21. F. Picard, C. Dressaire, L. Girbal, and M. Cocaign-Bousquet, “ Examination of post-transcriptional regulations in prokaryotes by integrative biology,” C. R. Biol. 332(11 ), 958973 (2009).
22. O. Purcell, N. J. Savery, C. S. Grierson, and M. di Bernardo, “ A comparative analysis of synthetic genetic oscillators,” J. R. Soc. Interface 7(52 ), 15031524 (2010).
23. E. Reznik and D. Segrè, “ On the stability of metabolic cycles,” J. Theor. Biol. 266(4 ), 536549 (2010).
24. B. Schwanhäusser, D. Busse, Na. Li, G. Dittmar, J. Schuchhardt, J. Wolf, W. Chen, and M. Selbach, “ Global quantification of mammalian gene expression control,” Nature 473(7347 ), 337342 (2011).
25. R. Steuer, T. Gross, J. Selbig, and B. Blasius, “ Structural kinetic modeling of metabolic networks,” Proc. Natl. Acad. Sci. U.S.A. 103, 1186811873 (2006).
26. R. Steuer, A. Nunes Nesi, A. R. Fernie, T. Gross, B. Blasius, and J. Selbig, “ From structure to dynamics of metabolic pathways: Applications to the plant mitochondrial TCA cycle,” Bioinformatics 23, 13781385 (2007).

Data & Media loading...


Article metrics loading...



The synthetic construction of intracellular circuits is frequently hindered by a poor knowledge of appropriate kinetics and precise rate parameters. Here, we use generalized modeling (GM) to study the dynamical behavior of topological models of a family of hybrid metabolic-genetic circuits known as “metabolators.” Under mild assumptions on the kinetics, we use GM to analytically prove that all explicit kinetic models which are topologically analogous to one such circuit, the “core metabolator,” cannot undergo Hopf bifurcations. Then, we examine more detailed models of the metabolator. Inspired by the experimental observation of a Hopf bifurcation in a synthetically constructed circuit related to the core metabolator, we apply GM to identify the critical components of the synthetically constructed metabolator which must be reintroduced in order to recover the Hopf bifurcation. Next, we study the dynamics of a re-wired version of the core metabolator, dubbed the “reverse” metabolator, and show that it exhibits a substantially richer set of dynamical behaviors, including both local and global oscillations. Prompted by the observation of relaxation oscillations in the reverse metabolator, we study the role that a separation of genetic and metabolic time scales may play in its dynamics, and find that widely separated time scales promote stability in the circuit. Our results illustrate a generic pipeline for vetting the potential success of a circuit design, simply by studying the dynamics of the corresponding generalized model.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd