1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Bifurcations in a low-order nonlinear model of tropical Pacific sea surface temperatures derived from observational data
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/23/2/10.1063/1.4802036
1.
1. J. P. Chao, ENSO Dynamics (The China Meteorological Press, Beijing, 1993), p. 2.
2.
2. J. P. Chao and Y. Cai, Acta Metall. Sin. 63(4 ), 385 (2005).
3.
3. A. H. Sobel, I. M. Held, and C. S. Bretherton, J. Climate 15, 2702 (2002).
http://dx.doi.org/10.1175/1520-0442(2002)015<2702:TESITT>2.0.CO;2
4.
4. T. Shinoda, J. Climate 18, 2628 (2005).
http://dx.doi.org/10.1175/JCLI3432.1
5.
5. R. H. Huang and Y. F. Wu, Adv. Atmos. Sci. 6, 21 (1989).
http://dx.doi.org/10.1007/BF02656915
6.
6. J. Bjerknes, Tellus 18, 820 (1966).
http://dx.doi.org/10.1111/j.2153-3490.1966.tb00303.x
7.
7. J. Bjerknes, Mon. Weather Rev. 97, 163 (1969).
http://dx.doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
8.
8. C. Y. Li, Clim. Environ. Res. 7(2 ), 160 (2002).
http://dx.doi.org/10.3878/j.issn.1006-9585.2002.02.04
9.
9. C. Y. Li, M. Mu, G. Zhou et al., Chin. J. Atmos. Sci. 32(4 ), 761 (2008).
http://dx.doi.org/10.3878/j.issn.1006-9895.2008.04.06
10.
10. S. Philip and G. Jan, J. Climate 22, 4014 (2009).
http://dx.doi.org/10.1175/2009JCLI2716.1
11.
11. D. Chen, M. A. Cane, A. Kaplan, S. E. Zebiak, and D. Huang, Nature 428, 733 (2004).
http://dx.doi.org/10.1038/nature02439
12.
12. W. Kessler and R. Kleeman, J. Climate 13, 3560 (2000).
http://dx.doi.org/10.1175/1520-0442(2000)013<3560:ROTMJO>2.0.CO;2
13.
13. E. Tziperman and L. Yu, J. Climate 20, 2760 (2007).
http://dx.doi.org/10.1175/JCLI4138a.1
14.
14. Y. Y. Bai, Z. Y. Guan, and Y. Zhang, Chin. J. Geophys. 52(11 ), 2689 (2009).
15.
15. Y. P. Zhao, Y. L. Chen, F. Wang, and A. Wu, Sci. China, Ser. D: Earth Sci. 37(1 ), 1 (2007).
16.
16. C. H. R. Lima, L. Upmanu, J. Tony, and G. B. Anthony, J. Climate 22, 4501 (2009).
http://dx.doi.org/10.1175/2009JCLI2524.1
17.
17. A. G. Barnston, M. H. Glantz, and Y. He, Bull. Am. Meteorol. Soc. 80, 217 (1999).
http://dx.doi.org/10.1175/1520-0477(1999)080<0217:PSOSAD>2.0.CO;2
18.
18. R. Zhang, M. Hong, and Z. B. Sun, Appl. Math. Mech. 27(12 ), 1438 (2006).
19.
19. M. Hong, R. Zhang, and G. X. Wu, Chin. J. Atmos. Sci. 31(2 ), 346 (2007).
http://dx.doi.org/10.3878/j.issn.1006-9895.2007.02.15
20.
20. R. Zhang, M. Hong, H. Z. Wan, Y. D. Chen, and Y. L. Wang, Chin. J. Geophys. 51(5 ), 958 (2008).
21.
21. M. Hong and R. Zhang, Acta Metall. Sin. 68(5 ), 1235 (2010).
22.
22. B. C. Weare, A. R. Navato, and E. Newellr, J. Phys. Oceanogr. 6(5 ), 671 (1976).
http://dx.doi.org/10.1175/1520-0485(1976)006<0671:EOAOPS>2.0.CO;2
23.
23. A. Alvera-Azcrate, A. Barth, and M. Rixen, Ocean Modell. 9, 325 (2005).
http://dx.doi.org/10.1016/j.ocemod.2004.08.001
24.
24. D. Dommenget and M. Latif, J. Climate 15(2 ), 216 (2002).
http://dx.doi.org/10.1175/1520-0442(2002)015<0216:ACNOTI>2.0.CO;2
25.
25. M. Ghil, M. R. Allen, M. D. Dettinger, K. Ide, and D. Kondra, Rev. Geophys. 40(1 ), 3 doi: 10.1029/2000RG000092 (2002).
http://dx.doi.org/10.1029/2000RG000092
26.
26. F. Takens, Lect. Notes Math. 898(2 ), 361 (1981).
27.
27. S. D. Liu and S. S. Liu, Nonlinear Dynamics and Complex Phenomenon (Meteorological Press, Beijing, 1989), p. 129.
28.
28. J. P. Huang and Y. H. Yi, Sci. China 3, 331 (1991).
29.
29. L. Wang, Intelligent Optimization Algorithms and Its Application (Tsinghua University Press, Beijing, 2001), p. 15.
30.
30. X. P. Wang and L. M. Cao, Algorithms-Theory, Applications and Soft Realization (Xi’an Jiaotong University Press, Xian, 2003), p. 123.
31.
31. H. Y. Zhang, F. Wang, and N. Zang, Acta Oceanol. Sin. 30(6 ), 17 (2008).
32.
32. Z. S. Lin, Nonlinear Science and its Application in Earth Science (The Meteorological Press, Beijing, 2003), p. 51.
33.
33. D. H. Luo and X. L. Peng, Acta Meteorol. Sin. 51(4 ), 414 (1993).
34.
34. F. F. Jin, S. I. An, A. Timmermann, and J. Zhao, Geophys. Res. Lett. 30, 20 doi: 10.1029/2002GL016356 (2003).
http://dx.doi.org/10.1029/2002GL016356
35.
35. F. F. Jin, J. D. Neelin, and M. Ghil, Science 264, 70 (1994).
http://dx.doi.org/10.1126/science.264.5155.70
36.
36. E. Tziperman, L. Stone, M. Cane, and H. Jarosh, Science 264, 72 (1994).
http://dx.doi.org/10.1126/science.264.5155.72
37.
37. E. Tziperman, M. Cane, and S. E. Zebiak, J. Atmos. Sci. 52, 293 (1995).
http://dx.doi.org/10.1175/1520-0469(1995)052<0293:IALTTS>2.0.CO;2
38.
38. P. Chang, L. Ji, B. Wang, and T. Li, J. Atmos. Sci. 52, 2353 (1995).
http://dx.doi.org/10.1175/1520-0469(1995)052<2353:IBTSCA>2.0.CO;2
39.
39. J. D. Neelin, J. Geophys. Res. 103, 14261, doi:10.1029/97JC03424 (1998).
http://dx.doi.org/10.1029/97JC03424
40.
40. S. E. Zebiak and M. A. Cane, Mon. Weather Rev. 115, 2262 (1987).
http://dx.doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/2/10.1063/1.4802036
Loading
/content/aip/journal/chaos/23/2/10.1063/1.4802036
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/23/2/10.1063/1.4802036
2013-04-19
2014-10-24

Abstract

Aiming at tackling the difficulty in exactly constituting the sea surface temperature (SST) dynamical model, the paper introduces the dynamical system reconstruction idea and establishes the nonlinear dynamical model of SST field based on 1963-2010 monthly average Hadley SST data. Time coefficients series after empirical orthogonal functions decomposition are taken as the dynamical model variables and Genetic Algorithms is used to optimize and retrieve the model parameters. The stability of the equilibrium in the reconstructed model is analyzed and dynamical actions such as bifurcation and mutation are discussed. Also the activity configuration and aberrance mechanism of the SST field are developed upon the actual activity characteristics of the SST field in the Tropical Pacific Ocean in that year. Results reveal that the bifurcation action of the SST field system from one stable high-value equilibrium to another stable low-value equilibrium accords with the La Niña process while the mutation action of the SST field system from two stable equilibriums to another stable equilibrium accords with the El Niño process.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/23/2/1.4802036.html;jsessionid=9q49c98d854kb.x-aip-live-06?itemId=/content/aip/journal/chaos/23/2/10.1063/1.4802036&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Bifurcations in a low-order nonlinear model of tropical Pacific sea surface temperatures derived from observational data
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/2/10.1063/1.4802036
10.1063/1.4802036
SEARCH_EXPAND_ITEM