1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Experimental distinction between chaotic and strange nonchaotic attractors on the basis of consistency
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/23/2/10.1063/1.4804181
1.
1. E. Ngamga, A. Nandi, R. Ramaswamy, M. Romano, M. Thiel, and J. Kurths, “ Recurrence analysis of strange nonchaotic dynamics,” Phys. Rev. E 75, 036222 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.036222
2.
2. C. Grebogi, E. Ott, S. Pelikan, and J. Yorke, “ Strange attractors that are not chaotic,” Physica D 13, 261 (1984).
http://dx.doi.org/10.1016/0167-2789(84)90282-3
3.
3. Z. Zhu and Z. Liu, “ Strange nonchaotic attractors of Chua's circuit with quasiperiodic excitation,” Int. J. Bifurcation Chaos 7, 227 (1997).
http://dx.doi.org/10.1142/S0218127497000169
4.
4. U. Feudel, J. Kurths, and A. Pikovsky, “ Strange non-chaotic attractor in a quasiperiodically forced circle map,” Physica D 88, 176 (1995).
http://dx.doi.org/10.1016/0167-2789(95)00205-I
5.
5. T. Mitsui and Y. Aizawa, “ Intermittency route to strange nonchaotic attractors in a non-skew-product map,” Phys. Rev. E 81, 046210 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.046210
6.
6. J. Heagy and S. Hammel, “ The birth of strange nonchaotic attractors,” Physica D 70, 140 (1994).
http://dx.doi.org/10.1016/0167-2789(94)90061-2
7.
7. W. Lim and S. Kim, “ Strange nonchaotic oscillations in the quasiperiodically forced Hodgkin–Huxley neuron,” J. Phys. A: Math. Theor. 42, 265103 (2009).
http://dx.doi.org/10.1088/1751-8113/42/26/265103
8.
8. M. Ding, C. Grebogi, and E. Ott, “ Dimensions of strange nonchaotic attractors,” Phys. Lett. A 137, 167 (1989).
http://dx.doi.org/10.1016/0375-9601(89)90204-1
9.
9. F. J. Romeiras and E. Ott, “ Strange nonchaotic attractors of the damped pendulum with quasiperiodic forcing,” Phys. Rev. A 35, 4404 (1987).
http://dx.doi.org/10.1103/PhysRevA.35.4404
10.
10. A. Bondeson, E. Ott, and T. M. Antonsen, “ Quasiperiodically forced damped pendula and Schrödinger equations with quasiperiodic potentials: Implications of their equivalence,” Phys. Rev. Lett. 55, 2103 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2103
11.
11. M. Ding and J. Kelso, “ Phase-resetting map and the dynamics of quasi-periodically forced biological oscillators,” Int. J. Bifurcation Chaos 4, 553 (1994).
http://dx.doi.org/10.1142/S0218127494000393
12.
12. Y.-C. Lai, “ Transition from strange nonchaotic to strange chaotic attractors,” Phys. Rev. E 53, 57 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.57
13.
13. T. Nishikawa and K. Kaneko, “ Fractalization of a torus as a strange nonchaotic attractor,” Phys. Rev. E 54, 6114 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.6114
14.
14. A. Prasad, V. Mehra, and R. Ramaswamy, “ Intermittency route to strange nonchaotic attractors,” Phys. Rev. Lett. 79, 4127 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.4127
15.
15. A. Venkatesan and M. Lakshmanan, “ Different routes to chaos via strange nonchaotic attractors in a quasiperiodically forced system,” Phys. Rev. E 58, 3008 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.3008
16.
16. T. Mitsui, “ Subdiffusion due to strange nonchaotic dynamics: A numerical study,” Phys. Rev. E 83, 066212 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.066212
17.
17. J. Shuai and D. Durand, “ Strange nonchaotic attractor in high-dimensional neural system,” Int. J. Bifurcation Chaos 13, 251 (2003).
http://dx.doi.org/10.1142/S0218127403006510
18.
18. T. Mitsui, S. Uenohara, T. Morie, Y. Horio, and K. Aihara, “ Torus-doubling process via strange nonchaotic attractors,” Phys. Lett. A 376, 1907 (2012).
http://dx.doi.org/10.1016/j.physleta.2012.04.005
19.
19. B. R. Hunt and E. Ott, “ Fractal properties of robust strange nonchaotic attractors,” Phys. Rev. Lett. 87, 254101 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.254101
20.
20. F. Romeiras, A. Bondeson, E. Ott, T. Antonsen, Jr., and C. Grebogi, “ Quasiperiodically forced dynamical systems with strange nonchaotic attractors,” Physica D 26, 277 (1987).
http://dx.doi.org/10.1016/0167-2789(87)90229-6
21.
21. K. Suresh, A. Prasad, and K. Thamilmaran, “ Birth of strange nonchaotic attractors through formation and merging of bubbles in a quasiperiodically forced Chua's oscillator,” Phys. Lett. A 377, 612 (2013).
http://dx.doi.org/10.1016/j.physleta.2012.12.026
22.
22. K. Thamilmaran, D. Senthilkumar, A. Venkatesan, and M. Lakshmanan, “ Experimental realization of strange nonchaotic attractors in a quasiperiodically forced electronic circuit,” Phys. Rev. E 74, 036205 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.036205
23.
23. T. Yang and K. Bilimgut, “ Experimental results of strange nonchaotic phenomenon in a second-order quasi-periodically forced electronic circuit,” Phys. Lett. A 236, 494 (1997).
http://dx.doi.org/10.1016/S0375-9601(97)00833-5
24.
24. T. Zhou, F. Moss, and A. Bulsara, “ Observation of a strange nonchaotic attractor in a multistable potential,” Phys. Rev. A 45, 5394 (1992).
http://dx.doi.org/10.1103/PhysRevA.45.5394
25.
25. D. Senthilkumar, K. Srinivasan, K. Thamilmaran, and M. Lakshmanan, “ Bubbling route to strange nonchaotic attractor in a nonlinear series LCR circuit with a nonsinusoidal force,” Phys. Rev. E 78, 066211 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.066211
26.
26. W. Ditto, M. Spano, H. Savage, S. Rauseo, J. Heagy, and E. Ott, “ Experimental observation of a strange nonchaotic attractor,” Phys. Rev. Lett. 65, 533 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.533
27.
27. G. Ruiz and P. Parmananda, “ Experimental observation of strange nonchaotic attractors in a driven excitable system,” Phy. Lett. A 367, 478 (2007).
http://dx.doi.org/10.1016/j.physleta.2007.03.053
28.
28. U. Feudel, S. Kuznetsov, and A. Pikovsky, Strange Nonchaotic Attractors: Dynamics between Order and Chaos in Quasiperiodically Forced Systems, World Scientific Series on Nonlinear Science, Series A, Vol. 56 (World Scientific Singapore, 2006).
29.
29. A. Prasad, S. Negi, and R. Ramaswamy, “ Strange nonchaotic attractors,” Int. J. Bifurcation Chaos 11, 291 (2001).
http://dx.doi.org/10.1142/S0218127401002195
30.
30. A. Prasad, A. Nandi, and R. Ramaswamy, “ Aperiodic nonchaotic attractors, strange and otherwise,” Int. J. Bifurcation Chaos 17, 3397 (2007).
http://dx.doi.org/10.1142/S0218127407019123
31.
31. T. Kapitaniak and M. S. EI Naschie, “ A note on randomness and strange behavior,” Phys. Lett. A 154, 249 (1991).
http://dx.doi.org/10.1016/0375-9601(91)90815-P
32.
32. J. Shuai, J. Lian, P. Hahn, and D. Durand, “ Positive Lyapunov exponents calculated from time series of strange nonchaotic attractors,” Phys. Rev. E 64, 026220 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.026220
33.
33. A. Uchida, R. McAllister, and R. Roy, “ Consistency of nonlinear system response to complex drive signals,” Phys. Rev. Lett. 93, 244102 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.244102
34.
34. R. Ramaswamy, “ Synchronization of strange nonchaotic attractors,” Phys. Rev. E 56, 7294 (1997).
http://dx.doi.org/10.1103/PhysRevE.56.7294
35.
35. Y. Horio, K. Aihara, and O. Yamamoto, “ Neuron-synapse IC chip-set for large-scale chaotic neural networks,” IEEE. Trans. Neural Netw. 14, 1393 (2003).
http://dx.doi.org/10.1109/TNN.2003.816349
36.
36. K. Aihara, T. Takabe, and M. Toyoda, “ Chaotic neural networks,” Phys. Lett. A 144, 333 (1990).
http://dx.doi.org/10.1016/0375-9601(90)90136-C
37.
37. A. Pikovsky and U. Feudel, “ Characterizing strange nonchaotic attractors,” Chaos 5, 253 (1995).
http://dx.doi.org/10.1063/1.166074
38.
38. F. Ledrappier, “ Some relations between dimension and Lyapounov exponents,” Commun. Math. Phys. 81, 229 (1981).
http://dx.doi.org/10.1007/BF01208896
39.
39. J. L. Kaplan and J. A. Yorke, “ Chaotic behavior of multidimensional difference equations,” Lect. Notes Math. 730, 204 (1979).
http://dx.doi.org/10.1007/BFb0064319
40.
40. I. Khovanov, N. Khovanova, P. McClintock, and V. Anishchenko, “ The effect of noise on strange nonchaotic attractors,” Phys. Lett. A 268, 315 (2000).
http://dx.doi.org/10.1016/S0375-9601(00)00183-3
41.
41. N. Marwan and J. Kurths, “ Nonlinear analysis of bivariate data with cross recurrence plots,” Phys. Lett. A 302, 299 (2002).
http://dx.doi.org/10.1016/S0375-9601(02)01170-2
42.
42. N. Marwan, M. Thiel, and N. R. Nowaczyk, “ Cross recurrence plot based synchronization of time series,” Nonlinear Processes Geophys. 9, 325 (2002).
http://dx.doi.org/10.5194/npg-9-325-2002
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/2/10.1063/1.4804181
Loading
/content/aip/journal/chaos/23/2/10.1063/1.4804181
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/23/2/10.1063/1.4804181
2013-05-08
2014-07-31

Abstract

We experimentally study strange nonchaotic attractors (SNAs) and chaotic attractors by using a nonlinear integrated circuit driven by a quasiperiodic input signal. An SNA is a geometrically strange attractor for which typical orbits have nonpositive Lyapunov exponents. It is a difficult problem to distinguish between SNAs and chaotic attractors experimentally. If a system has an SNA as a unique attractor, the system produces an identical response to a repeated quasiperiodic signal, regardless of the initial conditions, after a certain transient time. Such reproducibility of response outputs is called consistency. On the other hand, if the attractor is chaotic, the consistency is low owing to the sensitive dependence on initial conditions. In this paper, we analyze the experimental data for distinguishing between SNAs and chaotic attractors on the basis of the consistency.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/23/2/1.4804181.html;jsessionid=e8hecg69jl77t.x-aip-live-02?itemId=/content/aip/journal/chaos/23/2/10.1063/1.4804181&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Experimental distinction between chaotic and strange nonchaotic attractors on the basis of consistency
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/2/10.1063/1.4804181
10.1063/1.4804181
SEARCH_EXPAND_ITEM