1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/23/2/10.1063/1.4807098
1.
1. V. Fuster et al., “ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation): Developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society,” Circulation 114, e257e354 (2006).
http://dx.doi.org/10.1161/CIRCULATIONAHA.106.177292
2.
2. S. Lazar, S. Dixit, F. E. Marchlinski, D. J. Callans, and E. P. Gerstenfeld, “Presence of left-to-right atrial frequency gradient in paroxysmal but not persistent atrial fibrillation in humans,” Circulation 110, 31813186 (2004).
http://dx.doi.org/10.1161/01.CIR.0000147279.91094.5E
3.
3. E. P. Gerstenfeld, A. V. Sahakian, and S. Swiryn, “Evidence for transient linking of atrial excitation during atrial fibrillation in humans,” Circulation 86, 375382 (1992).
http://dx.doi.org/10.1161/01.CIR.86.2.375
4.
4. K. Nanthakumar et al., “Optical mapping of Langendorff-perfused human hearts: Establishing a model for the study of ventricular fibrillation in humans,” Am. J. Physiol. Heart circ. Physiol. 293, H875880 (2007).
http://dx.doi.org/10.1152/ajpheart.01415.2006
5.
5. V. V. Fedorov et al., “Effects of KATP channel openers diazoxide and pinacidil in coronary-perfused atria and ventricles from failing and non-failing human hearts,” J. Mol. Cell. Cardiol. 51, 215225 (2011).
http://dx.doi.org/10.1016/j.yjmcc.2011.04.016
6.
6. S. Nattel, “New ideas about atrial fibrillation 50 years on,” Nature 415, 219226 (2002).
http://dx.doi.org/10.1038/415219a
7.
7. M. Vaquero, D. Calvo, and J. Jalife, “Cardiac fibrillation: From ion channels to rotors in the human heart,” Heart Rhythm 5, 872879 (2008).
http://dx.doi.org/10.1016/j.hrthm.2008.02.034
8.
8. K. Ryu et al., “Mapping of atrial activation during sustained atrial fibrillation in dogs with rapid ventricular pacing induced heart failure: Evidence for a role of driver regions,” J. Cardiovasc. Electrophysiol. 16, 13481358 (2005).
http://dx.doi.org/10.1111/j.1540-8167.2005.00266.x
9.
9. J. Kalifa et al., “Mechanisms of wave fractionation at boundaries of high-frequency excitation in the posterior left atrium of the isolated sheep heart during atrial fibrillation,” Circulation 113, 626633 (2006).
http://dx.doi.org/10.1161/CIRCULATIONAHA.105.575340
10.
10. A. C. Skanes, R. Mandapati, O. Berenfeld, J. M. Davidenko, and J. Jalife, “Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart,” Circulation 98, 12361248 (1998).
http://dx.doi.org/10.1161/01.CIR.98.12.1236
11.
11. N. M. de Groot et al., “Electropathological substrate of longstanding persistent atrial fibrillation in patients with structural heart disease: Epicardial breakthrough,” Circulation 122, 16741682 (2010).
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.910901
12.
12. S. M. Narayan, D. E. Krummen, M. W. Enyeart, and W. J. Rappel, “Computational mapping identifies localized mechanisms for ablation of atrial fibrillation,” PloS one 7, e46034 (2012).
http://dx.doi.org/10.1371/journal.pone.0046034
13.
13. T.-J. Wu et al., “Simultaneous biatrial computerized mapping during permanent atrial fibrillation in patients with organic heart disease,” J. Cardiovasc. Electrophysiol. 13, 571577 (2002).
http://dx.doi.org/10.1046/j.1540-8167.2002.00571.x
14.
14. J. Sahadevan et al., “Epicardial mapping of chronic atrial fibrillation in patients: Preliminary observations,” Circulation 110, 32933299 (2004).
http://dx.doi.org/10.1161/01.CIR.0000147781.02738.13
15.
15. M. A. Allessie et al., “Electropathological substrate of long-standing persistent atrial fibrillation in patients with structural heart disease: Longitudinal dissociation,” Circ. Arrhythmia Electrophysiol. 3, 606615 (2010).
http://dx.doi.org/10.1161/CIRCEP.109.910125
16.
16. R. A. Winkle, R. H. Mead, G. Engel, M. H. Kong, and R. A. Patrawala, “Trends in atrial fibrillation ablation: Have we maximized the current paradigms?,” J. Interv. Card. Electrophysiol. 34, 115123 (2012).
http://dx.doi.org/10.1007/s10840-011-9662-1
17.
17. A. L. Waldo and G. K. Feld, “Inter-relationships of atrial fibrillation and atrial flutter mechanisms and clinical implications,” J. Am. College Cardiol. 51, 779786 (2008).
http://dx.doi.org/10.1016/j.jacc.2007.08.066
18.
18. K. Hall and L. Glass, “Locating ectopic foci,” J. Cardiovasc. Electrophysiol. 10, 387398 (1999).
http://dx.doi.org/10.1111/j.1540-8167.1999.tb00687.x
19.
19. K. Hall and L. Glass, “How to tell a target from a spiral: The two probe problem,” Phys. Rev. Lett. 82, 51645167 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.5164
20.
20. S. M. Narayan et al., “Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation) trial,” J. Am. College Cardiol. 60, 628636 (2012).
http://dx.doi.org/10.1016/j.jacc.2012.05.022
21.
21. S. M. Narayan, D. E. Krummen, and W. J. Rappel, “Clinical mapping approach to diagnose electrical rotors and focal impulse sources for human atrial fibrillation,” J. Cardiovasc. Electrophysiol. 23, 447454 (2012).
http://dx.doi.org/10.1111/j.1540-8167.2012.02332.x
22.
22. N. Wiener and A. Rosenblueth, “The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle,” Arch. Inst. Cardiol. Mex 16, 205265 (1946).
23.
23. F. Fenton and A. Karma, “Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation,” Chaos 8, 2047 (1998).
http://dx.doi.org/10.1063/1.166311
24.
24. F. H. Fenton, E. M. Cherry, H. M. Hastings, and S. J. Evans, “Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity,” Chaos 12, 852892 (2002).
http://dx.doi.org/10.1063/1.1504242
25.
25. S. Zlochiver, M. Yamazaki, J. Kalifa, and O. Berenfeld, “Rotor meandering contributes to irregularity in electrograms during atrial fibrillation,” Heart Rhythm 5, 846854 (2008).
http://dx.doi.org/10.1016/j.hrthm.2008.03.010
26.
26. J. Jalife, O. Berenfeld, and M. Mansour, “Mother rotors and fibrillatory conduction: A mechanism of atrial fibrillation,” Cardiovasc. Res. 54, 204216 (2002).
http://dx.doi.org/10.1016/S0008-6363(02)00223-7
27.
27. B. C. Hill and K. R. Courtney, “Design of a multi-point laser scanned optical monitor of cardiac action potential propagation: Application to microreentry in guinea pig atrium,” Ann. Biomed. Eng. 15, 567577 (1987).
http://dx.doi.org/10.1007/BF02364249
28.
28. C. Kirchhof et al., “Regional entrainment of atrial fibrillation studied by high-resolution mapping in open-chest dogs,” Circulation 88, 736749 (1993).
http://dx.doi.org/10.1161/01.CIR.88.2.736
29.
29. R. E. Ideker et al., “Can mapping differentiate microreentry from a focus in the ventricle?,” Heart Rhythm 6, 16661669 (2009).
http://dx.doi.org/10.1016/j.hrthm.2009.07.012
30.
30. E. M. Cherry and F. H. Fenton, “Visualization of spiral and scroll waves in simulated and experimental cardiac tissue,” New J. Phys. 10, 125016 (2008).
http://dx.doi.org/10.1088/1367-2630/10/12/125016
31.
31. P. Rensma, M. Allessie, W. Lammers, F. Bonke, and M. Schalij, “Length of excitation wave and susceptibility to reentrant atrial arrhythmias in normal conscious dogs,” Circ. Res. 62, 395410 (1988).
http://dx.doi.org/10.1161/01.RES.62.2.395
32.
32. G. G. Lalani et al., “Atrial conduction slows immediately before the onset of human atrial fibrillation: A bi-atrial contact mapping study of transitions to atrial fibrillation,” J. Am. College Cardiol. 59, 595606 (2012).
http://dx.doi.org/10.1016/j.jacc.2011.10.879
33.
33. S. M. Narayan, M. R. Franz, P. Clopton, E. J. Pruvot, and D. E. Krummen, “Repolarization alternans reveals vulnerability to human atrial fibrillation,” Circulation 123, 29222930 (2011).
http://dx.doi.org/10.1161/CIRCULATIONAHA.110.977827
34.
34. S. M. Narayan, D. Kazi, D. E. Krummen, and W. J. Rappel, “Repolarization and activation restitution near human pulmonary veins and atrial fibrillation initiation: A mechanism for the initiation of atrial fibrillation by premature beats,” J. Am. College Cardiol. 52, 12221230 (2008).
http://dx.doi.org/10.1016/j.jacc.2008.07.012
35.
35. D. Harrild and C. Henriquez, “A computer model of normal conduction in the human atria,” Circ. Res. 87, E25E36 (2000).
http://dx.doi.org/10.1161/01.RES.87.7.e25
36.
36. A. Baher et al., “Short-term cardiac memory and mother rotor fibrillation,” Am. J. Physiol. 292, H180H189 (2007).
http://dx.doi.org/10.1152/ajpheart.00944.2005
37.
37. F. H. Samie et al., “Rectification of the background potassium current: A determinant of rotor dynamics in ventricular fibrillation,” Circ. Res. 89, 12161223 (2001).
http://dx.doi.org/10.1161/hh2401.100818
38.
38. K. Shivkumar, K. A. Ellenbogen, J. D. Hummel, J. M. Miller, and J. S. Steinberg, “Acute termination of human atrial fibrillation by identification and catheter ablation of localized rotors and sources: First multicenter experience of focal impulse and rotor modulation (FIRM) ablation,” J. Cardiovasc. Electrophysiol. 23, 12771285 (2012).
http://dx.doi.org/10.1111/jce.12000
39.
39. S. M. Narayan, J. Patel, S. K. Mulpuru, and D. E. Krummen, “Focal impulse and rotor modulation (FIRM) of sustaining rotors abruptly terminates persistent atrial fibrillation to sinus rhythm with elimination on follow-up,” Heart Rhythm 9(9), 14361439 (2012).
http://dx.doi.org/10.1016/j.hrthm.2012.03.055
40.
40. P. S. Cuculich et al., “Noninvasive characterization of epicardial activation in humans with diverse atrial fibrillation patterns,” Circulation 122, 13641372 (2010).
http://dx.doi.org/10.1161/CIRCULATIONAHA.110.945709
41.
41. J. Zhao et al., “Electropathological substrate detection of persistent atrial fibrillation—a novel method to analyze unipolar electrograms of noncontact mapping,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 14711474.
42.
42. F. H. Fenton, E. M. Cherry, A. Karma, and W. J. Rappel, “Modeling wave propagation in realistic heart geometries using the phase-field method,” Chaos 15, 13502 (2005).
http://dx.doi.org/10.1063/1.1840311
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/2/10.1063/1.4807098
Loading
/content/aip/journal/chaos/23/2/10.1063/1.4807098
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/23/2/10.1063/1.4807098
2013-05-23
2015-03-04

Abstract

Defining mechanisms for cardiac fibrillation is challenging because, in contrast to other arrhythmias, fibrillation exhibits complex non-repeatability in spatiotemporal activation but paradoxically exhibits conserved spatial gradients in rate, dominant frequency, and electrical propagation. Unlike animal models, in which fibrillation can be mapped at high spatial and temporal resolution using optical dyes or arrays of contact electrodes, mapping of cardiac fibrillation in patients is constrained practically to lower resolutions or smaller fields-of-view. In many animal models, atrial fibrillation is maintained by localized electrical rotors and focal sources. However, until recently, few studies had revealed localized sources in human fibrillation, so that the impact of mapping constraints on the ability to identify rotors or focal sources in humans was not described. Here, we determine the minimum spatial and temporal resolutions theoretically required to detect rigidly rotating spiral waves and focal sources, then extend these requirements for spiral waves in computer simulations. Finally, we apply our results to clinical data acquired during human atrial fibrillation using a novel technique termed focal impulse and rotor mapping (FIRM). Our results provide theoretical justification and clinical demonstration that FIRM meets the spatio-temporal resolution requirements to reliably identify rotors and focal sources for human atrial fibrillation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/23/2/1.4807098.html;jsessionid=55t6krrjn1vfi.x-aip-live-02?itemId=/content/aip/journal/chaos/23/2/10.1063/1.4807098&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Theoretical considerations for mapping activation in human cardiac fibrillation
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/2/10.1063/1.4807098
10.1063/1.4807098
SEARCH_EXPAND_ITEM