1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Comparisons of purely topological model, betweenness based model and direct current power flow model to analyze power grid vulnerability
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/23/2/10.1063/1.4807478
1.
1. Y. Y. Haimes, Risk Anal. 26, 293296 (2006).
http://dx.doi.org/10.1111/j.1539-6924.2006.00755.x
2.
2. T. Aven, Risk Anal. 31, 515522 (2011).
http://dx.doi.org/10.1111/j.1539-6924.2010.01528.x
3.
3. V. Gol'dshtein, G. A. Koganov, and G. I. Surdutovich, “Vulnerability and hierarchy of complex networks,” arXiv:cond-mat/0409298.
4.
4. J. I. Uitto, Appl. Geogr. 18(1), 716 (1998).
http://dx.doi.org/10.1016/S0143-6228(97)00041-6
5.
5. S. L. Cutter, Prog. Human Geogr. 20(4), 529539 (1996).
http://dx.doi.org/10.1177/030913259602000407
6.
6. R. Albert, H. Jeong, and A. L. Barabási, Nature 406, 378382 (2000).
http://dx.doi.org/10.1038/35019019
7.
7. R. Albert, I. Albert, and G. L. Nakarado, Phys. Rev, E 69, 25103 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.025103
8.
8. K. Poljansek, F. Bono, and E. Gutierrez, Earthquake Eng. Struct. Dyn. 41, 6179 (2012).
http://dx.doi.org/10.1002/eqe.1118
9.
9. L. A. N. Amaral, M. Barthelemy, A. Scala, and H. E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 97, 1114911152 (2000).
http://dx.doi.org/10.1073/pnas.200327197
10.
10. M. Rosas-Casals, S. Valverde, and R. V. Sole, Int. J. Bifurcation Chaos 17, 24652475 (2007).
http://dx.doi.org/10.1142/S0218127407018531
11.
11. D. P. Chassin and C. Posse, Physica A 355, 667677 (2005).
http://dx.doi.org/10.1016/j.physa.2005.02.051
12.
12. L. Duenas-Osorio, J. I. Craig, and B. J. Goodno, Earthquake Eng. Struct. Dyn. 36, 285306 (2007).
http://dx.doi.org/10.1002/eqe.626
13.
13. L. Duenas-Osorio, J. I. Craig, B. J. Goodno, and A. Bostrom, J. Infrastruct. Syst. 13, 185194 (2007).
http://dx.doi.org/10.1061/(ASCE)1076-0342(2007)13:3(185)
14.
14. S. A. Patterson and G. E. Apostolakis, Reliab. Eng. Syst. Saf. 92, 11831203 (2007).
http://dx.doi.org/10.1016/j.ress.2006.08.004
15.
15. J. Winkler, L. Duenas-Osorio, R. Stein, and D. Subramanian, J. Infrastruct. Syst. 17, 138150 (2011).
http://dx.doi.org/10.1061/(ASCE)IS.1943-555X.0000068
16.
16. A. E. Motter and Y. C. Lai, Phys. Rev. E 66, 065102 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.065102
17.
17. R. Kinney, P. Crucitti, R. Albert, and V. Latora, Eur. Phys. J. B 46, 101107 (2005).
http://dx.doi.org/10.1140/epjb/e2005-00237-9
18.
18. P. Crucitti, V. Latora, and M. Marchiori, Physica A 338, 9297 (2004).
http://dx.doi.org/10.1016/j.physa.2004.02.029
19.
19. L. Duenas-Osorio and S. M. Vemuru, Struct. Saf. 31, 157167 (2009).
http://dx.doi.org/10.1016/j.strusafe.2008.06.007
20.
20. J. Winkler, L. Duenas-Osorio, R. Stein, and D. Subramanian, Reliab. Eng. Syst. Saf. 95, 323336 (2010).
http://dx.doi.org/10.1016/j.ress.2009.11.002
21.
21. M. Ouyang, L. Duenas-Osorio, and X. Min, Struct. Saf. 36–37, 2331 (2012).
http://dx.doi.org/10.1016/j.strusafe.2011.12.004
22.
22. E. Zio and G. Sansavini, IEEE Trans. Reliab. 60, 94101 (2011).
http://dx.doi.org/10.1109/TR.2010.2104211
23.
23. J. W. Wang and L. L. Rong, Saf. Sci. 47, 13321336 (2009).
http://dx.doi.org/10.1016/j.ssci.2009.02.002
24.
24. T. J. Overbye, X. Cheng, and Y. Sun, in Proceedings of the 37th Annual Hawaii International Conference on System Sciences, 5–8 January 2004.
25.
25. M. A. Rios, D. S. Kirschen, D. Jayaweera, D. P. Nedic, and R. N. Allan, IEEE Trans. Power Syst. 17, 543548 (2002).
http://dx.doi.org/10.1109/TPWRS.2002.800872
26.
26. I. Dobson, B. A. Carreras, V. Lynch, and D. E. Newman, in The 34th Hawaii International Conference on System Sciences, Maui, Hawaii, January 2001.
27.
27. I. Dobson, B. A. Carreras, V. E. Lynch, and D. E. Newman, Chaos 17, 026103 (2007).
http://dx.doi.org/10.1063/1.2737822
28.
28. J. Chen, J. S. Thorp, and I. Dobson, Electr. Power Energy Syst. 27, 318326(2005).
http://dx.doi.org/10.1016/j.ijepes.2004.12.003
29.
29. M. Anghel, K. A. Werley, and A. E. Motter, in The 40th Hawaii International Conference on System Sciences, Big Island, Hawaii, 3–6 January 2007.
30.
30. M. Ouyang and L. Duenas-Osorio, Chaos 22, 033122 (2012).
http://dx.doi.org/10.1063/1.4737204
31.
31. K. Sun and Z. X. Han, in 2005 IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific Dalian, China.
32.
32. D. Watts and H. Ren, in IEEE International Conference on Sustainable Energy Technologies, 24–27 November 2008.
33.
33. V. Rosato, L. Issacharoff, G. Gianese, and S. Bologna, preprint arXiv:0909.1664 [physics.soc-ph] (2009).
34.
34. X. Chen, K. Sun, Y. J. Cao, and S. Wang, in IEEE Power Engineering Society General Meeting, 24–28 June 2007.
35.
35. E. Bompard, R. Napoll, and F. Xue, Int. J. Crit. Infrastruct. Prot. 2, 512 (2009).
http://dx.doi.org/10.1016/j.ijcip.2009.02.002
36.
36. S. Arianos, E. Bompard, A. Carbone, and F. Xue, Chaos 19, 013119 (2009).
http://dx.doi.org/10.1063/1.3077229
37.
37. E. Bompard, R. Napoli, and F. Xue, IET Gener. Transm. Distrib. 4, 716724 (2010).
http://dx.doi.org/10.1049/iet-gtd.2009.0452
38.
38. R. D. Christie, Power Systems Test Case Archive (Department of Electrical Engineering, University of Washington, 1999), 24 March 2007, Available at: http://www.ee.washington.edu/research/pstcai.
39.
39. P. Hines, E. Cotilla-Sanchez, and S. Blumsack, Chaos 20, 033122 (2012).
http://dx.doi.org/10.1063/1.3489887
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/2/10.1063/1.4807478
Loading
/content/aip/journal/chaos/23/2/10.1063/1.4807478
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/23/2/10.1063/1.4807478
2013-05-23
2014-10-01

Abstract

This paper selects three frequently used power grid models, including a purely topological model (PTM), a betweennness based model (BBM), and a direct current power flow model (DCPFM), to describe three different dynamical processes on a power grid under both single and multiple component failures. Each of the dynamical processes is then characterized by both a topology-based and a flow-based vulnerability metrics to compare the three models with each other from the vulnerability perspective. Taking as an example, the IEEE 300 power grid with line capacity set proportional to a tolerance parameter , the results show non-linear phenomenon: under single node failures, there exists a critical value of  = 1.36, above which the three models all produce identical topology-based vulnerability results and more than 85% nodes have identical flow-based vulnerability from any two models; under multiple node failures that each node fails with an identical failure probability , there exists a critical  = 0.56, above which the three models produce almost identical topology-based vulnerability results at any  ≥ 1, but producing identical flow-based vulnerability results only occurs at  = 1. In addition, the topology-based vulnerability results can provide a good approximation for the flow-based vulnerability under large , and the priority of PTM and BBM to better approach the DCPFM for vulnerability analysis mainly depends on the value of . Similar results are also found for other failure types, other system operation parameters, and other power grids.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/23/2/1.4807478.html;jsessionid=4tq7kqs56qhim.x-aip-live-03?itemId=/content/aip/journal/chaos/23/2/10.1063/1.4807478&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Comparisons of purely topological model, betweenness based model and direct current power flow model to analyze power grid vulnerability
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/2/10.1063/1.4807478
10.1063/1.4807478
SEARCH_EXPAND_ITEM