1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/23/2/10.1063/1.4807908
1.
1. H. J. Herrmann and S. Roux, Statistical Models for Fracture and Disordered Media (North-Holland, Amsterdam, 1990).
2.
2. D. Sornette, Critical Phenomena in Natural Sciences, Chaos, Fractals, Selforganization and Disorder: Concepts and Tools (Springer-Verlag, Berlin, 2000).
3.
3. L. Girard, J. Weiss, and D. Amitrano, Phys. Rev. Lett. 108, 225502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.225502
4.
4. J. W. Warwick, C. Stoker, and T. R. Meyer, J. Geophys. Res. 87(B4), 2851, doi:10.1029/JB087iB04p02851 (1982).
http://dx.doi.org/10.1029/JB087iB04p02851
5.
5. T. Ogawa, K. Oike, and T. J. Miura, Geophys. Res., [Solid Earth Planets] 90, 6245 (1985).
http://dx.doi.org/10.1029/JD090iD04p06245
6.
6. A. Rabinovitch, V. Frid, and D. Bahat, Phys. Rev. E 65, 011401 (2001).
http://dx.doi.org/10.1103/PhysRevE.65.011401
7.
7. K. Fukui, S. Okubo, and T. Terashima, Rock Mech. Rock Eng. 38(5), 411 (2005).
http://dx.doi.org/10.1007/s00603-005-0046-7
8.
8. K. Baddari, A. Frolov, V. Tourtchine, and F. Rahmoune, Rock Mech. Rock Eng. 44, 269280 (2011).
http://dx.doi.org/10.1007/s00603-010-0130-5
9.
9. G. Lacidogna, A. Carpinteri, A. Manuello, G. Durin, A. Schiavi, G. Niccolini, and A. Agosto, Strain 47, 144 (2011).
http://dx.doi.org/10.1111/j.1475-1305.2010.00750.x
10.
10. A. Carpinteri, G. Lacidogna, A. Manuello, G. Niccolini, A. Schiavi, and A. Agosto, SEM Exp. Techniq. (2012), Vol. 36, pp. 5364.
11.
11. K. Karamanos, A. Peratzakis, P. Kapiris, S. Nikolopoulos, J. Kopanas, and K. Eftaxias, Nonlinear Proc. Geophys. 12, 835 (2005).
http://dx.doi.org/10.5194/npg-12-835-2005
12.
12. A. Rabinovitch, V. Frid, and D. Bahat, Tectonophysics 431, 1521 (2007).
http://dx.doi.org/10.1016/j.tecto.2006.05.027
13.
13. F. Freund, A. Gupta, S. J. Butow, and S. Tenn, “Molecular hydrogen and dormant charge carriers in minerals and rocks,” in Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, edited by M. Hayakawa (Terra Sci. Publ. Comp., Tokyo, 1999), pp. 859871.
14.
14. M. Kamogawa and Y.-H. Ohtsuki, Proc. Jpn. Acad. Ser. B 75, 186189 (1999).
http://dx.doi.org/10.2183/pjab.75.186
15.
15. D. Lockner and T. Madden, J. Geophys. Res. 96(B12), 1962319642, doi:10.1029/91JB01642 (1991).
http://dx.doi.org/10.1029/91JB01642
16.
16. I. Main and M. Naylor, Eur. Phys. J. Spec. Top. 205, 183197 (2012).
http://dx.doi.org/10.1140/epjst/e2012-01570-x
17.
17. K. Eftaxias, P. Kapiris, J. Polygiannakis, N. Bogris, J. Kopanas, G. Antonopoulos, A. Peratzakis, and V. Hadjicontis, Geophys. Res. Lett. 28, 3321, doi:10.1029/2001GL013124 (2001).
http://dx.doi.org/10.1029/2001GL013124
18.
18. P. G. Kapiris, K. A. Eftaxias, and T. L. Chelidze, Phys. Rev. Lett. 92, 065702 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.065702
19.
19. Y. F. Contoyiannis, P. G. Kapiris, and K. A. Eftaxias, Phys. Rev. E 71, 066123 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.066123
20.
20. K. Karamanos, D. Dakopoulos, K. Aloupis, A. Peratzakis, L. Athanasopoulou, S. Nikolopoulos, P. Kapiris, and K. Eftaxias, Phys. Rev. E. 74, 016104 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.016104
21.
21. C. Papadimitriou, M. Kalimeri, and K. Eftaxias, Phys. Rev. E 77, 036101 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.036101
22.
22. M. Kalimeri, C. Papadimitriou, G. Balasis, and K. Eftaxias, Physica A 387, 1161 (2008).
http://dx.doi.org/10.1016/j.physa.2007.10.053
23.
23. S. M. Potirakis, G. Minadakis, and K. Eftaxias, Physica A 391, 300 (2012).
http://dx.doi.org/10.1016/j.physa.2011.08.003
24.
24. S. M. Potirakis, G. Minadakis, C. Nomicos, and K. Eftaxias, Nat. Hazards Earth Syst. Sci. 11, 2859 (2011).
http://dx.doi.org/10.5194/nhess-11-2859-2011
25.
25. G. Minadakis, S. M. Potirakis, C. Nomicos, and K. Eftaxias, Physica A 391, 2232 (2012).
http://dx.doi.org/10.1016/j.physa.2011.11.049
26.
26. S. M. Potirakis, G. Minadakis, and K. Eftaxias, Nat. Hazards Earth Syst. Sci. 12, 1179 (2012).
http://dx.doi.org/10.5194/nhess-12-1179-2012
27.
27. G. Minadakis, S. M. Potirakis, J. Stonham, C. Nomicos, and K. Eftaxias, Physica A 391(22), 56485657 (2012).
http://dx.doi.org/10.1016/j.physa.2012.04.030
28.
28. S. M. Potirakis, G. Minadakis, and K. Eftaxias, Nat. Hazards 64(1), 641650 (2012).
http://dx.doi.org/10.1007/s11069-012-0262-x
29.
29. Y. F. Contoyiannis and K. Eftaxias, Nonlinear Process. Geophys. 15, 379 (2008).
http://dx.doi.org/10.5194/npg-15-379-2008
30.
30. Y. F. Contoyiannis, S. M. Potirakis, and K. Eftaxias, Nat. Hazards Earth Syst. Sci. 13, 125139 (2013).
http://dx.doi.org/10.5194/nhess-13-125-2013
31.
31. P. Varotsos, N. V. Sarlis, E. S. Skordas, S. Uyeda, and M. Kamogawa, Proc. Natl. Acad. Sci. 108(28), 11361 (2011).
http://dx.doi.org/10.1073/pnas.1108138108
32.
32. P. A. Varotsos, N. V. Sarlis, and E. S. Skordas, Pract Athens Acad. 76, 294 (2001).
33.
33. P. A. Varotsos, N. V. Sarlis, and E. S. Skordas, Phys. Rev. E 66, 011902 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.011902
34.
34. P. Varotsos, N. V. Sarlis, and E. S. Skordas, Natural Time Analysis: The New View of Time (Springer, Berlin, 2011).
35.
35. S. Uyeda, M. Kamogawa, and H. Tanaka, J. Geophys Res. 114, B02310 (2009).
http://dx.doi.org/10.1029/2007JB005332
36.
36. P. A. Varotsos, N. V. Sarlis, E. S. Skordas, H. K. Tanaka, and M. S. Lazaridou, Phys. Rev. E 73, 031114 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.031114
37.
37. N. V. Sarlis, E. S. Skordas, M. S. Lazaridou, and P. A. Varotsos, Proc. Jpn. Acad., Ser. B 84, 331 (2008).
http://dx.doi.org/10.2183/pjab.84.331
38.
38. N. V. Sarlis, E. S. Skordas, and P. A. Varotsos, Europhys. Lett. 96(2), 28006 (2011).
http://dx.doi.org/10.1209/0295-5075/96/28006
39.
39. S. Abe, N. V. Sarlis, E. S. Skordas, H. K. Tanaka, and P. A. Varotsos, Phys. Rev. Lett. 94, 170601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.170601
40.
40. P. A. Varotsos, N. V. Sarlis, and E. S. Skordas, Chaos 19, 023114 (2009).
http://dx.doi.org/10.1063/1.3130931
41.
41. K. Eftaxias, Physica A 389, 133140 (2010).
http://dx.doi.org/10.1016/j.physa.2009.08.034
42.
42. D. Pingel, P. Schmelcher, and F. K. Diakonos, Chaos 9, 357 (1999).
http://dx.doi.org/10.1063/1.166413
43.
43. F. K. Diakonos, D. Pingel, and P. Schmelcher, Phys. Lett. A 264(1–2), 162170 (1999).
http://dx.doi.org/10.1016/S0375-9601(99)00775-6
44.
44. S. Maslov, M. Paczuski, and P. Bak, Phys. Rev. Lett. 73, 2162 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.2162
45.
45. Y. F. Contoyiannis, F. K. Diakonos, P. G. Kapiris, A. S. Peratzakis, and K. A. Eftaxias, Phys. Chem. Earth 29(4–9), 397408 (2004).
http://dx.doi.org/10.1016/j.pce.2003.11.012
46.
46. Y. F. Contoyiannis, C. Nomicos, J. Kopanas, G. Antonopoulos, L. Contoyianni, and K. Eftaxias, Physica A 389, 499 (2010).
http://dx.doi.org/10.1016/j.physa.2009.09.046
47.
47. P. A. Varotsos, N. V. Sarlis, H. K. Tanaka, and E. S. Skordas, Phys. Rev. E 72, 041103 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.041103
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/2/10.1063/1.4807908
Loading
/content/aip/journal/chaos/23/2/10.1063/1.4807908
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/23/2/10.1063/1.4807908
2013-06-03
2015-08-02

Abstract

Criticality of complex systems reveals itself in various ways. One way to monitor a system at critical state is to analyze its observable manifestations using the recently introduced method of natural time. Pre-fracture electromagnetic (EM) emissions, in agreement to laboratory experiments, have been consistently detected in the MHz band prior to significant earthquakes. It has been proposed that these emissions stem from the fracture of the heterogeneous materials surrounding the strong entities (asperities) distributed along the fault, preventing the relative slipping. It has also been proposed that the fracture of heterogeneous material could be described in analogy to the critical phase transitions in statistical physics. In this work, the natural time analysis is for the first time applied to the pre-fracture MHz EM signals revealing their critical nature. Seismicity and pre-fracture EM emissions should be two sides of the same coin concerning the earthquake generation process. Therefore, we also examine the corresponding foreshock seismic activity, as another manifestation of the same complex system at critical state. We conclude that the foreshock seismicity data present criticality features as well.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/23/2/1.4807908.html;jsessionid=22dmfmcisnqri.x-aip-live-02?itemId=/content/aip/journal/chaos/23/2/10.1063/1.4807908&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Natural time analysis of critical phenomena: The case of pre-fracture electromagnetic emissions
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/2/10.1063/1.4807908
10.1063/1.4807908
SEARCH_EXPAND_ITEM