1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Robust stabilization for a class of nonlinear systems via a single input control applicable to chaotic systems and its circuit implementation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/23/2/10.1063/1.4810928
1.
1. M. Abedini, R. Vatankhah, and N. Assadian, Commun. Nonlinear Sci. Numer. Simul. 17, 3832 (2012).
http://dx.doi.org/10.1016/j.cnsns.2012.02.004
2.
2. G. Ablay, Nonlinear Anal.: Hybrid Syst. 3, 531 (2009).
http://dx.doi.org/10.1016/j.nahs.2009.04.002
3.
3. A. Alfi, Chaos, Solitons Fractals 45, 351 (2012).
http://dx.doi.org/10.1016/j.chaos.2012.01.001
4.
4. M. Ayati and H. Khaloozadeh, IET Control Theory Appl. 4, 437 (2010).
http://dx.doi.org/10.1049/iet-cta.2008.0576
5.
5. H. H. Chen, Phys. Lett. A 372, 1841 (2008).
http://dx.doi.org/10.1016/j.physleta.2007.10.049
6.
6. X. Chen and C. Liu, Nonlinear Anal.: Real World Appl. 11, 683 (2010).
http://dx.doi.org/10.1016/j.nonrwa.2009.01.014
7.
7. C. C. Cheng, Y. S. Lin, and S. W. Wu, J. Franklin Inst. 349, 2626 (2012).
http://dx.doi.org/10.1016/j.jfranklin.2012.06.006
8.
8. C. F. Chuang, Y. J. Sun, and W. J. Wang, Chaos 22, 043108 (2012).
http://dx.doi.org/10.1063/1.4761818
9.
9. F. H. Hsiao, J. Franklin Inst. 347, 1114 (2010).
http://dx.doi.org/10.1016/j.jfranklin.2010.04.001
10.
10. C. F. Huang, T. L. Liao, C. Y. Chen, and J. J. Yan, Comput. Math. Appl. 64, 1036 (2012).
http://dx.doi.org/10.1016/j.camwa.2012.03.022
11.
11. Y. C. Hung, T. L. Liao, and J. J. Yan, Appl. Math. Comput. 209, 391 (2009).
http://dx.doi.org/10.1016/j.amc.2008.12.058
12.
12. B. Jovic and C. P. Unsworth, Electron. Lett. 46, 49 (2010).
http://dx.doi.org/10.1049/el.2010.1532
13.
13. H. K. Lam, IET Control Theory Appl. 4, 2285 (2010).
http://dx.doi.org/10.1049/iet-cta.2009.0328
14.
14. H. Y. Li and Y. A. Hu, Commun. Nonlinear Sci. Numer. Simul. 16, 3904 (2011).
http://dx.doi.org/10.1016/j.cnsns.2011.02.031
15.
15. C. J. Lin, S. K. Yang, and H. T. Yau, Comput. Math. Appl. 64, 988 (2012).
http://dx.doi.org/10.1016/j.camwa.2012.03.007
16.
16. A. Loria, IEEE Trans. Circuits Syst., II: Express Briefs 56, 674 (2009).
http://dx.doi.org/10.1109/TCSII.2009.2025624
17.
17. A. Loria, IEEE Trans. Circuits Syst., II: Express Briefs 57, 213 (2010).
http://dx.doi.org/10.1109/TCSII.2010.2040303
18.
18. H. Mkaouar and O. Boubaker, Commun. Nonlinear Sci. Numer. Simul. 17, 1292 (2012).
http://dx.doi.org/10.1016/j.cnsns.2011.07.027
19.
19. N. S. Pai and S. P. Chang, Comput. Math. Appl. 64, 709 (2012).
http://dx.doi.org/10.1016/j.camwa.2011.10.037
20.
20. F. Wang and C. Liu, Phys. Lett. A 360, 274 (2006).
http://dx.doi.org/10.1016/j.physleta.2006.08.037
21.
21. H. Wang, Z. Han, W. Zhang, and Q. Xie, J. Sound Vib. 320, 365 (2009).
http://dx.doi.org/10.1016/j.jsv.2008.07.023
22.
22. J. Wen and C. S. Jiang, Commun. Nonlinear Sci. Numer. Simul. 16(1), 475492 (2011).
http://dx.doi.org/10.1016/j.cnsns.2010.03.015
23.
23. W. S. Yu and T. S. Wu, IET Circuits Devices Syst. 5, 303 (2011).
http://dx.doi.org/10.1049/iet-cds.2010.0292
24.
24. G. Zheng and D. Boutat, IET Control Theory Appl. 5, 308 (2011).
http://dx.doi.org/10.1049/iet-cta.2010.0078
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/2/10.1063/1.4810928
Loading
/content/aip/journal/chaos/23/2/10.1063/1.4810928
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/23/2/10.1063/1.4810928
2013-06-17
2014-09-30

Abstract

In this study, the concept of global exponential ε-stabilization is introduced and the robust stabilization for a class of nonlinear systems with single input is investigated. Based on Lyapunov-like Theorem with differential and integral inequalities, a feedback control is proposed to realize the global stabilization of such nonlinear systems with any pre-specified exponential convergence rate. The guaranteed exponential convergence rate can be also correctly estimated. This result can be straightforwardly applicable to some famous chaotic systems. Besides, it will be proven that a single and linear control, with lower dimensions than that of the states, can realize the global exponential stability of some famous chaotic systems. Finally, comparisons of our main results with recently published results as well as numerical examples with circuit realization are provided to show the effectiveness and superiority of the obtained results.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/23/2/1.4810928.html;jsessionid=27g4rzqp9bbm.x-aip-live-06?itemId=/content/aip/journal/chaos/23/2/10.1063/1.4810928&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Robust stabilization for a class of nonlinear systems via a single input control applicable to chaotic systems and its circuit implementation
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/2/10.1063/1.4810928
10.1063/1.4810928
SEARCH_EXPAND_ITEM