1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Experimental observation of transition from chaotic bursting to chaotic spiking in a neural pacemaker
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/23/2/10.1063/1.4810932
1.
1. M. R. Guevara, L. Glass, and A. Shrier, Science 214, 1350 (1981).
http://dx.doi.org/10.1126/science.7313693
2.
2. A. Garfinkel, M. L. Spano, and W. L. Ditto, Science 257, 1230 (1992).
http://dx.doi.org/10.1126/science.1519060
3.
3. M. Y. Kim, M. Aguilar, A. Hodge, E. Vigmond, A. Shrier, and L. Glass, Phys. Rev. Lett. 103, 058101 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.058101
4.
4. T. Quail, N. Aguilar, M. Y. Kim, A. Hodge, L. Glass, and A. Shrier, Chaos 22, 033140 (2012).
http://dx.doi.org/10.1063/1.4748854
5.
5. H. Hayashi, S. Ishzuka, M. Ohta, and K. Hirakawa, Phys. Lett. A 88, 435 (1982).
http://dx.doi.org/10.1016/0375-9601(82)90674-0
6.
6. K. Aihara, G. Matsumoto, and M. Ichikawa, Phys. Lett. A 111, 251 (1985).
http://dx.doi.org/10.1016/0375-9601(85)90256-7
7.
7. S. J. Schiff, K. Jerger, and D. H. Duong, Nature 370, 615 (1994).
http://dx.doi.org/10.1038/370615a0
8.
8. U. Feudel, A. Neiman, X. Pei, W. Wojtennek, H. A. Braun, H. Huber, and F. Moss, Chaos 10, 231 (2000).
http://dx.doi.org/10.1063/1.166488
9.
9. B. Jia, H. G. Gu, and X. Y. Zhao, Cogn. Neurodyn. 6, 89 (2012).
http://dx.doi.org/10.1007/s11571-011-9184-7
10.
10. H. G. Gu, B. Jia, and G. R. Chen, Phys. Lett. A 377, 718 (2013).
http://dx.doi.org/10.1016/j.physleta.2013.01.015
11.
11. J. L. Hindmarsh and R. M. Rose, Proc. R. Soc. London, Ser. B 221, 87 (1984).
http://dx.doi.org/10.1098/rspb.1984.0024
12.
12. D. Terman, J. Nonlinear Sci. 2, 135 (1992).
http://dx.doi.org/10.1007/BF02429854
13.
13. A. V. Holden and Y. S. Fan, Chaos, Solitons Fractals 2, 221 (1992).
http://dx.doi.org/10.1016/0960-0779(92)90032-I
14.
14. A. V. Holden and Y. S. Fan, Chaos, Solitons Fractals 2, 349 (1992).
http://dx.doi.org/10.1016/0960-0779(92)90012-C
15.
15. Y. S. Fan and A. V. Holden, Chaos, Solitons Fractals 2, 583 (1992).
http://dx.doi.org/10.1016/0960-0779(92)90055-R
16.
16. Y. S. Fan and A. V. Holden, Chaos, Solitons Fractals 3, 439 (1993).
http://dx.doi.org/10.1016/0960-0779(93)90029-Z
17.
17. X. J. Wang, Physica D 62, 263 (1993).
http://dx.doi.org/10.1016/0167-2789(93)90286-A
18.
18. J. M. González-Miranda, Chaos 13, 845 (2003).
http://dx.doi.org/10.1063/1.1594851
19.
19. J. M. González-Miranda, Phys. Rev. E 72, 051922 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.051922
20.
20. G. Innocenti, A. Morelli, R. Genesio, and A. Torcini, Chaos 17, 043128 (2007).
http://dx.doi.org/10.1063/1.2818153
21.
21. A. L. Shilnikov and M. L. Kolomiets, Int. J. Bifurcation Chaos Appl. Sci. Eng. 18, 2141 (2008).
http://dx.doi.org/10.1142/S0218127408021634
22.
22. G. Innocenti and R. Genesio, Chaos 19, 023124 (2009).
http://dx.doi.org/10.1063/1.3156650
23.
23. J. M. González-Miranda, Int. J. Bifurcation Chaos Appl. Sci. Eng. 17, 3071 (2007).
http://dx.doi.org/10.1142/S0218127407018877
24.
24. M. Storace, D. Linaro, and E. de Lange, Chaos 18, 033128 (2008).
http://dx.doi.org/10.1063/1.2975967
25.
25. P. C. Rech, Phys. Lett. A 375, 1461 (2011).
http://dx.doi.org/10.1016/j.physleta.2011.02.037
26.
26. R. Barrio and A. Shilnikov, J. Math. Neurosci. 1, 6 (2011).
http://dx.doi.org/10.1186/2190-8567-1-6
27.
27. M. Dhamala, V. K. Jirsa, and M. Ding, Phys. Rev. Lett. 92, 028101 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.028101
28.
28. D. Linaro, A. Champneys, M. Storace, and M. Desroches, SIAM J. Appl. Dyn. Syst. 11, 939 (2012).
http://dx.doi.org/10.1137/110848931
29.
29. H. Su, G. Alroy, E. D. Kirson, and Y. Yaari, J. Neurosci. 21, 4173 (2001).
30.
30. G. R. Holt, W. R. Softky, C. Koch, and R. J. Douglas, J. Neurophysiol. 75, 1806 (1996).
31.
31. J. Rinzel and Y. S. Lee, J. Math. Biol. 25, 653 (1987).
http://dx.doi.org/10.1007/BF00275501
32.
32. E. M. Izhikevich, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10, 1171 (2000).
http://dx.doi.org/10.1142/S0218127400000840
33.
33. C. A. Del Negro, C. H. Hsiao, S. H. Chandler, and A. Garfinkel, Biophys. J. 75, 174 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)77504-6
34.
34. Z. Jian, J. L. Xing, G. S. Yang, and S. J. Hu, NeuroSignals 13, 150 (2004).
http://dx.doi.org/10.1159/000076569
35.
35. Y. S. Fan and T. R. Chay, Biol. Cybern. 71, 417 (1994).
http://dx.doi.org/10.1007/BF00198918
36.
36. T. R. Chay, Physica D 16, 233 (1985).
http://dx.doi.org/10.1016/0167-2789(85)90060-0
37.
37. Y. S. Fan and T. R. Chay, Phys. Rev. E 51, 1012 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.1012
38.
38. T. R. Chay, Y. S. Fan, and Y. S. Lee, Int. J. Bifurcation Chaos Appl. Sci. Eng. 5, 595 (1995).
http://dx.doi.org/10.1142/S0218127495000491
39.
39. L. X. Duan and Q. S. Lu, Chaos, Soliton Fractals 30, 1172 (2006).
http://dx.doi.org/10.1016/j.chaos.2005.08.179
40.
40. J. M. González-Miranda, Chaos 22, 013123 (2012).
http://dx.doi.org/10.1063/1.3687017
41.
41. H. A. Braun, J. Schwabedal, M. Dewald, C. Finke, S. Postnova, M. T. Huber, S. Wollweber, H. Schneider, M. C. Hirsch, K. Voigt, U. Feudel, and F. Moss, Chaos 21, 047509 (2011).
http://dx.doi.org/10.1063/1.3671326
42.
42. L. Li, H. G. Gu, Z. Q. Liu, M. H. Yang, and W. Ren, Int. J. Bifurc. Chaos Appl. Sci. Eng. 14, 1813 (2004).
http://dx.doi.org/10.1142/S0218127404010114
43.
43. H. G. Gu, W. Ren, Q. S. Lu, S. G. Wu, and W. J. Chen, Phys. Lett. A 285, 63 (2001).
http://dx.doi.org/10.1016/S0375-9601(01)00278-X
44.
44. H. G. Gu, M. H. Yang, L. Li, Z. Q. Liu, and W. Ren, NeuroReport 13, 1657 (2002).
http://dx.doi.org/10.1097/00001756-200209160-00018
45.
45. H. G. Gu, M. H. Yang, L. Li, Z. Q. Liu, and W. Ren, Phys. Lett. A 319, 89 (2003).
http://dx.doi.org/10.1016/j.physleta.2003.09.077
46.
46. M. H. Yang, Z. Q. Liu, L. Li, Y. L. Xu, H. J. Liu, H. G. Gu, and W. Ren, Int. J. Bifurcation Chaos Appl. Sci. Eng. 19, 453 (2009).
http://dx.doi.org/10.1142/S0218127409023135
47.
47. J. Mo, Y. Y. Li, C. L. Wei, M. H. Yang, Z. Q. Liu, H. G. Gu, S. X. Qu, and W. Ren, Chin. Phys. B 19, 080513 (2010).
http://dx.doi.org/10.1088/1674-1056/19/8/080513
48.
48. H. G. Gu, B. Jia, and Q. S. Lu, Cogn. Neurodyn. 5, 87 (2011).
http://dx.doi.org/10.1007/s11571-010-9145-6
49.
49. G. J. Bennet and Y. K. Xie, Pain 33, 87 (1988).
http://dx.doi.org/10.1016/0304-3959(88)90209-6
50.
50. M. Tal and E. Eliav, Pain 64, 511 (1996).
http://dx.doi.org/10.1016/0304-3959(95)00175-1
51.
51. J. D. Farmer, J. B. Swift, H. L. Swinney, and J. J. Sidorowich, Phys. Rev. Lett. 59, 845 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.845
52.
52. T. Sauer, Phys. Rev. Lett. 72, 3811 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.3811
53.
53. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, Physica D 58, 77 (1992).
http://dx.doi.org/10.1016/0167-2789(92)90102-S
54.
54. J. Yang, Y. B. Duan, J. L. Xing, J. L. Zhu, J. H. Duan, and S. J. Hu, Neurosci. Lett. 392, 105 (2006).
http://dx.doi.org/10.1016/j.neulet.2005.09.007
55.
55. Q. S. Lu, Z. Q. Yang, L. X. Duan, H. G. Gu, and W. Ren, Chaos, Soliton Fractals 40, 577 (2009).
http://dx.doi.org/10.1016/j.chaos.2007.08.040
56.
56. W. Ren, S. J. Hu, B. J. Zhang, Y. F. Gong, and J. X. Xu, Int. J. Bifurcation Chaos Appl. Sci. Eng. 7, 1867 (1997).
http://dx.doi.org/10.1142/S0218127497001448
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/2/10.1063/1.4810932
Loading
/content/aip/journal/chaos/23/2/10.1063/1.4810932
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/23/2/10.1063/1.4810932
2013-06-12
2015-04-27

Abstract

The transition from chaotic bursting to chaotic spiking has been simulated and analyzed in theoretical neuronal models. In the present study, we report experimental observations in a neural pacemaker of a transition from chaotic bursting to chaotic spiking within a bifurcation scenario from period-1 bursting to period-1 spiking. This was induced by adjusting extracellular calcium or potassium concentrations. The bifurcation scenario began from period-doubling bifurcations or period-adding sequences of bursting pattern. This chaotic bursting is characterized by alternations between multiple continuous spikes and a long duration of quiescence, whereas chaotic spiking is comprised of fast, continuous spikes without periods of quiescence. Chaotic bursting changed to chaotic spiking as long interspike intervals (ISIs) of quiescence disappeared within bursting patterns, drastically decreasing both ISIs and the magnitude of the chaotic attractors. Deterministic structures of the chaotic bursting and spiking patterns are also identified by a short-term prediction. The experimental observations, which agree with published findings in theoretical neuronal models, demonstrate the existence and reveal the dynamics of a neuronal transition from chaotic bursting to chaotic spiking in the nervous system.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/23/2/1.4810932.html;jsessionid=1nn60lja19oj1.x-aip-live-02?itemId=/content/aip/journal/chaos/23/2/10.1063/1.4810932&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Experimental observation of transition from chaotic bursting to chaotic spiking in a neural pacemaker
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/2/10.1063/1.4810932
10.1063/1.4810932
SEARCH_EXPAND_ITEM