Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. F. C. Moon, Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers (Wiley, New York, 1992), Chaps. 4 and 6.
2. G. L. Baker and J. P. Gollub, Chaotic Dynamics: An Introduction, 2nd ed. (Cambridge University Press, New York, 1996).
3. G. L. Baker and J. A. Blackburn, The Pendulum: A Case Study in Physics (Oxford University Press, Oxford, 2005), Chap. 6.
4. M. Gitterman, The Chaotic Pendulum (World Scientific, New Jersey, 2010).
5. J. A. Blackburn, Y. Zhou-jing, S. Vik, H. J. T. Smith, and M. A. H. Nerenberg, “Experimental study of chaos in a driven pendulum,” Physica D 26, 385395 (1987).
6. B. Duchesne et al., “Chaos in the motion of an inverted pendulum: An undergraduate laboratory experiment,” Am. J. Phys. 59, 987991 (1991).
7. J. P. Berdahl and K. V. Lugt, “Magnetically driven chaotic pendulum,” Am. J. Phys. 69, 10161019 (2001).
8. R. DeSerio, “Chaotic pendulum: The complete attractor,” Am. J. Phys. 71, 250257 (2003).
9. J. Starrett and R. Tagg, “Control of a chaotic parametrically driven pendulum,” Phys. Rev. Lett. 74, 19741977 (1995).
10. F. H. I. Pereita-Pinto, A. M. Ferreira, and M. A. Savi, “Chaos control in a nonlinear pendulum using a semi-continuous method,” Chaos, Solitons Fractals 22, 653668 (2004).
11. Y. Kraftmakher, “Experiments with a magnetically controlled pendulum,” Eur. J. Phys. 28, 10071020 (2007).
12. G. L. Baker, J. P. Gollub, and J. A. Blackburn, “Inverting chaos: Extracting system parameters from experimental data,” Chaos 6, 528533 (1996).
13. R. Wiebe and L. N. Virgin, “A heuristic method for identifying chaos from frequency content,” Chaos 22, 013136 (2012).
14. L. A. Aguirre and C. Letellier, “Modeling nonlinear dynamics and chaos: A review,” Math. Probl. Eng. 2009, 238960.
15. D. Oliver, “A chaotic pendulum,” Phys. Teach. 37, 174 (1999).
16. A. Siahmakoun, V. A. French, and J. Patterson, “Nonlinear dynamics of a sinusoidally driven pendulum in a repulsive magnetic field,” Am. J. Phys. 65, 393400 (1997).
17. B. P. Mann, “Energy criterion for potential well escapes in a bistable magnetic pendulum,” J. Sound Vib. 323, 864876 (2009).
18. G. Donoso and C. L. Ladera, “Nonlinear dynamics of a magnetically driven Duffing-type spring-magnet oscillator in the static magnetic field of a coil,” Eur. J. Phys. 33, 14731486 (2012).
19. B. Bagchi, S. Das, S. Ghosh, and S. Poria, “Nonlinear dynamics of a position-dependent mass driven Duffing-type oscillator,” J. Phys. A: Math. Theor. 46, 032001 (2013).
20. F.–J. Elmer, “Nonlinear dynamics of dry friction,” J. Phys. A: Math. Gen. 30, 60576063 (1997).
21. J. Wojewoda, A. Stefanski, M. Wiercigroch, and T. Kapitaniak, “Estimation of Lyapunov exponents for a system with sensitive friction model,” Arch. Appl. Mech. 79, 667677 (2009).
22. J. Theiler, “Estimating fractal dimension,” J. Opt. Soc. Am. A 7, 10551073 (1990).
23. F. Camastra, “Data dimensionality estimation methods: A survey,” Pattern Recogn. 36, 29452954 (2003).
24. J. Theiler, “Efficient algorithm for estimating the correlation dimension from a set of discrete points,” Phys. Rev. A 36, 44564462 (1987).
25. A. Corana, G. Bortonlan, and A. Casaleggio, “Most probable dimension value and most flat interval methods for automatic estimation of dimension from time series,” Chaos, Solitons Fractals 20, 779790 (2004).
26. S. Borovkova, R. Rosa, and L. Sardonini, “Resolving statistical uncertainty in correlation dimension estimation,” Chaos 21, 023124 (2011).
27. J. A. Blackburn, H. J. T. Smith, and D. E. Edmundson, “Transient chaos in a parametrically damped pendulum,” Phys. Rev. A 45, 593599 (1992).
28. J. Argyris and I. Andreadis, “The influence of noise on the correlation dimension of chaotic attractors,” Chaos, Solitons Fractals 9, 343361 (1998).
29. A. W. Jayawardena, P. Xu, and W. K. Li, “A method of estimating the noise level in a chaotic time series,” Chaos 18, 023115 (2008).

Data & Media loading...


Article metrics loading...



The behavior of a chaotic physical pendulum is significantly modified through the addition of a magnetic interaction. The extended behavior is studied through identifying distinct characteristics in the Poincaré sections and turning point maps of the systems. The validity of our model is shown through simulated bifurcations generated from coefficients estimated at a number of different frequencies. These simulated bifurcations also demonstrate that coefficients estimated at one frequency can be used to predict the behavior of the system at a different drive frequency. A quantitative measure of the correlation dimension shows that the simulated Poincaré diagrams are in good agreement with experiment and theory. Possible sources of bias in modeled systems are identified.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd