1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Predicting the behavior of a chaotic pendulum with a variable interaction potential
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/23/3/10.1063/1.4812721
1.
1. F. C. Moon, Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers (Wiley, New York, 1992), Chaps. 4 and 6.
2.
2. G. L. Baker and J. P. Gollub, Chaotic Dynamics: An Introduction, 2nd ed. (Cambridge University Press, New York, 1996).
3.
3. G. L. Baker and J. A. Blackburn, The Pendulum: A Case Study in Physics (Oxford University Press, Oxford, 2005), Chap. 6.
4.
4. M. Gitterman, The Chaotic Pendulum (World Scientific, New Jersey, 2010).
5.
5. J. A. Blackburn, Y. Zhou-jing, S. Vik, H. J. T. Smith, and M. A. H. Nerenberg, “Experimental study of chaos in a driven pendulum,” Physica D 26, 385395 (1987).
http://dx.doi.org/10.1016/0167-2789(87)90238-7
6.
6. B. Duchesne et al., “Chaos in the motion of an inverted pendulum: An undergraduate laboratory experiment,” Am. J. Phys. 59, 987991 (1991).
http://dx.doi.org/10.1119/1.16657
7.
7. J. P. Berdahl and K. V. Lugt, “Magnetically driven chaotic pendulum,” Am. J. Phys. 69, 10161019 (2001).
http://dx.doi.org/10.1119/1.1387041
8.
8. R. DeSerio, “Chaotic pendulum: The complete attractor,” Am. J. Phys. 71, 250257 (2003).
http://dx.doi.org/10.1119/1.1526465
9.
9. J. Starrett and R. Tagg, “Control of a chaotic parametrically driven pendulum,” Phys. Rev. Lett. 74, 19741977 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.1974
10.
10. F. H. I. Pereita-Pinto, A. M. Ferreira, and M. A. Savi, “Chaos control in a nonlinear pendulum using a semi-continuous method,” Chaos, Solitons Fractals 22, 653668 (2004).
http://dx.doi.org/10.1016/j.chaos.2004.02.047
11.
11. Y. Kraftmakher, “Experiments with a magnetically controlled pendulum,” Eur. J. Phys. 28, 10071020 (2007).
http://dx.doi.org/10.1088/0143-0807/28/5/023
12.
12. G. L. Baker, J. P. Gollub, and J. A. Blackburn, “Inverting chaos: Extracting system parameters from experimental data,” Chaos 6, 528533 (1996).
http://dx.doi.org/10.1063/1.166200
13.
13. R. Wiebe and L. N. Virgin, “A heuristic method for identifying chaos from frequency content,” Chaos 22, 013136 (2012).
http://dx.doi.org/10.1063/1.3675624
14.
14. L. A. Aguirre and C. Letellier, “Modeling nonlinear dynamics and chaos: A review,” Math. Probl. Eng. 2009, 238960.
http://dx.doi.org/10.1155/2009/238960
15.
15. D. Oliver, “A chaotic pendulum,” Phys. Teach. 37, 174 (1999).
http://dx.doi.org/10.1119/1.880209
16.
16. A. Siahmakoun, V. A. French, and J. Patterson, “Nonlinear dynamics of a sinusoidally driven pendulum in a repulsive magnetic field,” Am. J. Phys. 65, 393400 (1997).
http://dx.doi.org/10.1119/1.18546
17.
17. B. P. Mann, “Energy criterion for potential well escapes in a bistable magnetic pendulum,” J. Sound Vib. 323, 864876 (2009).
http://dx.doi.org/10.1016/j.jsv.2009.01.012
18.
18. G. Donoso and C. L. Ladera, “Nonlinear dynamics of a magnetically driven Duffing-type spring-magnet oscillator in the static magnetic field of a coil,” Eur. J. Phys. 33, 14731486 (2012).
http://dx.doi.org/10.1088/0143-0807/33/6/1473
19.
19. B. Bagchi, S. Das, S. Ghosh, and S. Poria, “Nonlinear dynamics of a position-dependent mass driven Duffing-type oscillator,” J. Phys. A: Math. Theor. 46, 032001 (2013).
http://dx.doi.org/10.1088/1751-8113/46/3/032001
20.
20. F.–J. Elmer, “Nonlinear dynamics of dry friction,” J. Phys. A: Math. Gen. 30, 60576063 (1997).
http://dx.doi.org/10.1088/0305-4470/30/17/015
21.
21. J. Wojewoda, A. Stefanski, M. Wiercigroch, and T. Kapitaniak, “Estimation of Lyapunov exponents for a system with sensitive friction model,” Arch. Appl. Mech. 79, 667677 (2009).
http://dx.doi.org/10.1007/s00419-008-0291-9
22.
22. J. Theiler, “Estimating fractal dimension,” J. Opt. Soc. Am. A 7, 10551073 (1990).
http://dx.doi.org/10.1364/JOSAA.7.001055
23.
23. F. Camastra, “Data dimensionality estimation methods: A survey,” Pattern Recogn. 36, 29452954 (2003).
http://dx.doi.org/10.1016/S0031-3203(03)00176-6
24.
24. J. Theiler, “Efficient algorithm for estimating the correlation dimension from a set of discrete points,” Phys. Rev. A 36, 44564462 (1987).
http://dx.doi.org/10.1103/PhysRevA.36.4456
25.
25. A. Corana, G. Bortonlan, and A. Casaleggio, “Most probable dimension value and most flat interval methods for automatic estimation of dimension from time series,” Chaos, Solitons Fractals 20, 779790 (2004).
http://dx.doi.org/10.1016/j.chaos.2003.08.012
26.
26. S. Borovkova, R. Rosa, and L. Sardonini, “Resolving statistical uncertainty in correlation dimension estimation,” Chaos 21, 023124 (2011).
http://dx.doi.org/10.1063/1.3592799
27.
27. J. A. Blackburn, H. J. T. Smith, and D. E. Edmundson, “Transient chaos in a parametrically damped pendulum,” Phys. Rev. A 45, 593599 (1992).
http://dx.doi.org/10.1103/PhysRevA.45.593
28.
28. J. Argyris and I. Andreadis, “The influence of noise on the correlation dimension of chaotic attractors,” Chaos, Solitons Fractals 9, 343361 (1998).
http://dx.doi.org/10.1016/S0960-0779(97)00120-3
29.
29. A. W. Jayawardena, P. Xu, and W. K. Li, “A method of estimating the noise level in a chaotic time series,” Chaos 18, 023115 (2008).
http://dx.doi.org/10.1063/1.2903757
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/3/10.1063/1.4812721
Loading
/content/aip/journal/chaos/23/3/10.1063/1.4812721
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/23/3/10.1063/1.4812721
2013-07-09
2014-09-17

Abstract

The behavior of a chaotic physical pendulum is significantly modified through the addition of a magnetic interaction. The extended behavior is studied through identifying distinct characteristics in the Poincaré sections and turning point maps of the systems. The validity of our model is shown through simulated bifurcations generated from coefficients estimated at a number of different frequencies. These simulated bifurcations also demonstrate that coefficients estimated at one frequency can be used to predict the behavior of the system at a different drive frequency. A quantitative measure of the correlation dimension shows that the simulated Poincaré diagrams are in good agreement with experiment and theory. Possible sources of bias in modeled systems are identified.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/23/3/1.4812721.html;jsessionid=2bi8vlsu7qgto.x-aip-live-03?itemId=/content/aip/journal/chaos/23/3/10.1063/1.4812721&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Predicting the behavior of a chaotic pendulum with a variable interaction potential
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/3/10.1063/1.4812721
10.1063/1.4812721
SEARCH_EXPAND_ITEM