1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
A fractal theory based fractional diffusion model used for the fast desorption process of methane in coal
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/23/3/10.1063/1.4813597
1.
1. M. Pillalamarry, S. Harpalani, and S. Liu, Int. J. Coal Geol. 86(4 ), 342 (2011).
http://dx.doi.org/10.1016/j.coal.2011.03.007
2.
2. A. Marecka and A. Mianowski, Fuel 77(14 ), 1691 (1998).
http://dx.doi.org/10.1016/S0016-2361(98)00071-4
3.
3. B. Bijeljic, S. Rubin, H. Scher, and B. Berkowitz, J. Contam. Hydrol. 120–121(0 ), 213 (2011).
http://dx.doi.org/10.1016/j.jconhyd.2010.05.007
4.
4. G. Srinivasan, D. M. Tartakovsky, M. Dentz, H. Viswanathan, B. Berkowitz, and B. A. Robinson, J. Comput. Phys. 229(11 ), 4304 (2010).
http://dx.doi.org/10.1016/j.jcp.2010.02.014
5.
5. T. Le Borgne, M. Dentz, D. Bolster, J. Carrera, J. de Dreuzy, and P. Davy, Adv. Water Resources 33(12 ), 1468 (2010).
http://dx.doi.org/10.1016/j.advwatres.2010.08.006
6.
6. B. O'Shaughnessy and I. Procaccia, Phys. Rev. Lett. 54, 455 (1985).
http://dx.doi.org/10.1103/PhysRevLett.54.455
7.
7. H. Randriamahazaka, V. Noël and C. Chevrot, J. Electroanal. Chem. 521(1–2 ), 107 (2002).
http://dx.doi.org/10.1016/S0022-0728(02)00665-4
8.
8. M. Giona and H. Eduardo Roman, Physica A 185(1–4), 87 (1992).
http://dx.doi.org/10.1016/0378-4371(92)90441-R
9.
9. S. Wang, Z. Ma, and H. Yao, Chem. Eng. Sci. 64(6 ), 1318 (2009).
http://dx.doi.org/10.1016/j.ces.2008.11.016
10.
10. Q. Zheng, B. Yu, S. Wang, and L. Luo, Chem. Eng. Sci. 68(1 ), 650 (2012).
http://dx.doi.org/10.1016/j.ces.2011.10.031
11.
11. Q. Zeng, H. Li and D. Liu, Commun. Nonlinear Sci. Numer. Simul. 4(2 ), 99 (1999).
http://dx.doi.org/10.1016/S1007-5704(99)90019-9
12.
12. J. R. Leith, Signal Process. 83(11 ), 2397 (2003).
http://dx.doi.org/10.1016/S0165-1684(03)00192-0
13.
13. Q. H. Zeng and H. Q. Li, Fractals 8(1 ), 117 (2000).
http://dx.doi.org/10.1142/S0218348X00000123
14.
14. J. Xiaoyun and X. M. Yu, Int. J. Non-Linear Mech. 41(1 ), 156 (2006).
http://dx.doi.org/10.1016/j.ijnonlinmec.2004.07.023
15.
15. X. Jiang, M. Xu, and H. Qi, Nonlinear Anal.: Real World Appl. 11(1 ), 262 (2010).
http://dx.doi.org/10.1016/j.nonrwa.2008.10.057
16.
16. A. Saghafi, M. Faiz, and D. Roberts, Int. J. Coal Geol. 70(1–3 ), 240 (2007).
http://dx.doi.org/10.1016/j.coal.2006.03.006
17.
17. N. Siemons, K. A. A. Wolf, and J. Bruining, Int. J. Coal Geol. 72(3–4 ), 315 (2007).
http://dx.doi.org/10.1016/j.coal.2007.04.004
18.
18. J. Yi, I. Y. Akkutlu, C. Ö. Karacan, and C. R. Clarkson, Int. J. Coal Geol. 77(1–2 ), 137 (2009).
http://dx.doi.org/10.1016/j.coal.2008.09.016
19.
19. Y. Cai, D. Liu, Z. Pan, Y. Yao, J. Li, and Y. Qiu, Fuel 103(0 ), 258 (2013).
http://dx.doi.org/10.1016/j.fuel.2012.06.055
20.
20. X. Cui, R. M. Bustin, and G. Dipple, Fuel 83(3 ), 293 (2004).
http://dx.doi.org/10.1016/j.fuel.2003.09.001
21.
21. D. H. Zhang, S. M. Heng, J. Feng, and Y. Hao, J. Eng. Thermophys. 25(5 ), 822 (2004) (in Chinese).
22.
22. R. Metzler and J. Klafter, Europhys. Lett. 51(5 ), 492 (2000).
http://dx.doi.org/10.1209/epl/i2000-00364-5
23.
23. C. Marguerit, D. Schertzer, F. Schmitt, and S. Lovejoy, J. Marine Syst. 16(1–2 ), 69 (1998).
http://dx.doi.org/10.1016/S0924-7963(97)00100-0
24.
24. G. Fernandez-Anaya, F. J. Valdes-Parada, and J. Alvarez-Ramirez, Physica A 390(23–24 ), 4198 (2011).
http://dx.doi.org/10.1016/j.physa.2011.07.001
25.
25. H. Sun, Y. Chen, and W. Chen, Signal Process. 91(3 ), 525 (2011).
http://dx.doi.org/10.1016/j.sigpro.2010.01.027
26.
26. R. Metzler, W. G. Glöckle, and T. F. Nonnenmacher, Physica A 211(1 ), 13 (1994).
http://dx.doi.org/10.1016/0378-4371(94)90064-7
27.
27. N. Heymans and I. Podlubny, Rheol. Acta 45(5 ), 765 (2006).
http://dx.doi.org/10.1007/s00397-005-0043-5
28.
28. A. Sharifi-Viand, M. G. Mahjani, and M. Jafarian, J. Electroanal. Chem. 671(0 ), 51 (2012).
http://dx.doi.org/10.1016/j.jelechem.2012.02.014
29.
29. I. Hironobu, I. Shinichi, and M. A. Adams, Phys. B: Condens. Matter 241(0 ), 585 (1997).
http://dx.doi.org/10.1016/S0921-4526(97)00651-0
30.
30. W. I. Friesen and R. J. Mikula, J. Colloid Interface Sci. 120(1 ), 263 (1987).
http://dx.doi.org/10.1016/0021-9797(87)90348-1
31.
31. L. Xu, D. Zhang, and X. Xian, J. Colloid Interface Sci. 190(2 ), 357 (1997).
http://dx.doi.org/10.1006/jcis.1997.4885
32.
32. Y. Yao, D. Liu, D. Tang, S. Tang, and W. Huang, Int. J. Coal Geol. 73(1 ), 27 (2008).
http://dx.doi.org/10.1016/j.coal.2007.07.003
33.
33. Y. Yao, D. Liu, D. Tang, S. Tang, W. Huang, Z. Liu, and Y. Che, Comput. Geosci. 35(6 ), 1159 (2009).
http://dx.doi.org/10.1016/j.cageo.2008.09.005
34.
34. C. Wang, S. Hao, W. Sun, and W. Chu, Int. J. Mining Sci. Technol. 22(6 ), 855 (2012).
http://dx.doi.org/10.1016/j.ijmst.2012.11.003
35.
35. F. Ren, J. Liang, W. Qiu, X. Wang, Y. Xu, and R. R. Nigmatullin, Phys. Lett. A 312(3–4 ), 187 (2003).
http://dx.doi.org/10.1016/S0375-9601(03)00644-3
36.
36. E. Özarslan, T. M. Shepherd, C. G. Koay, S. J. Blackband, and P. J. Basser, NeuroImage 60(2 ), 1380 (2012).
http://dx.doi.org/10.1016/j.neuroimage.2012.01.105
37.
37. C. Li, W. Deng, and Y. Wu, Comput. Math. Appl. 62(3 ), 1024 (2011).
http://dx.doi.org/10.1016/j.camwa.2011.04.020
38.
38. R. Metzler and J. Klafter, Phys. Rep. 339(1 ), 1 (2000).
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/3/10.1063/1.4813597
Loading
/content/aip/journal/chaos/23/3/10.1063/1.4813597
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/23/3/10.1063/1.4813597
2013-07-17
2015-03-05

Abstract

Based on the realistic property of the pore structure in coal, we established a fractal theory based Fractional diffusion model (FFDModel) by introducing the fractal dimension to the Fick's classical model and changing the first-order partial differential equation about time into a fractional-order partial differential equation. Then, the solution of the FFDModel was obtained with separation variables technique. In order to verify the correctness of the solution, three coal samples with different rank from China were collected to do the methane desorption experiment of the fast desorption stage. The results indicate that the fractal dimension ( ) of the coking coal is the lowest of the three coal ranks. By comparing the FFDModel with Fick's classical model, we can see that the FFDModel fits better with the three measured samples.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/23/3/1.4813597.html;jsessionid=cpbioum3akkj.x-aip-live-06?itemId=/content/aip/journal/chaos/23/3/10.1063/1.4813597&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A fractal theory based fractional diffusion model used for the fast desorption process of methane in coal
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/3/10.1063/1.4813597
10.1063/1.4813597
SEARCH_EXPAND_ITEM