1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols
Rent:
Rent this article for
USD
10.1063/1.4829632
/content/aip/journal/chaos/23/4/10.1063/1.4829632
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/4/10.1063/1.4829632

Figures

Image of FIG. 1.
FIG. 1.

Schematic of the annular ring of cardiac tissue. Two diametrically opposed actuating electrodes are connected to the extra-cellular domain (shown by the two arrows) and can inject or subtract electrical charges during defibrillatory shocks. A traveling action potential is also shown.

Image of FIG. 2.
FIG. 2.

Space–time plot showing the wave dynamics on the ring. The color scale represents the membrane potential ranging from −90 to +40 mV. Note that the hyperpolarized—(around −136 mV) and depolarized—(around +155 mV) regions are out of scale at time  = 0. The undisturbed dynamics ( < 0) represents discordant alternans. At  = 0 a monophasic shock of 8 ms duration with a corresponding electric field intensity of  = 2 V/cm is applied. In this particular case, the shock leads to a suppression of the wave propagation. The two electrodes are located at π/2 and 3π/2 along the ring (shown by thick white segments in the vertical axis).

Image of FIG. 3.
FIG. 3.

The three shock waveforms analyzed in this paper: monophasic, biphasic I (symmetric), and biphasic II (asymmetric). is the current injection term that appears in Eq. (2) . The currents shown here are the ones that are applied by the electrode that is located at position ; the currents applied by the other electrode (located at ) have the same magnitude but opposite polarity.

Image of FIG. 4.
FIG. 4.

Color space-time plots of showing the four different mechanisms for reentrant dynamics removal: (a) mechanism of Direct Block (DB) (E = 1 V/cm, monophasic); (b) mechanism of Annihilation (An) of two counter-propagating fronts (E = 3 V/cm, biphasic I); (c) mechanism of Delayed Block (De) showing that a single wave encounters a refractory region and is finally blocked (E = 4 V/cm, monophasic); (d) mechanism of Direct Activation (DA) showing that a large proportion of tissue is excited and then relaxed to the rest state (E = 6 V/cm, biphasic II). Note that for all the four plots (a)–(d), the horizontal time scale is not constant. The time resolution is enlarged by one order of magnitude up to 18 ms in order to highlight the effect of the shock. The shock is always initiated at  = 0.

Image of FIG. 5.
FIG. 5.

Fitted logistic curves (see Eq. (9) ) for the three different shock protocols: Monophasic (black); Biphasic I (red) and Biphasic II (green). Also depicted are the box plots showing the dispersion in the results due to the heterogeneities in the internal conductivity. In order to avoid overlap of the box plots, we have shifted to the left (by 1/3 V/cm) all the box plots associated with the monophasic protocol (in black) and we have shifted to the right (also by 1/3 V/cm) all the box plots associated with the biphasic II protocol (in green). The box plots associated with the biphasic I protocols (in red) as well as all the logistic curves have not been shifted. The horizontal dashed lines at 50% and 90% are plotted to ease the comparison between the three protocols. The information about the defibrillation mechanisms at work at selected values (E = 1; 3; 5; 7 V/cm) of the energy is also displayed. The color coding is the following: DB (purple); An (yellow); De (blue); DA (orange).

Image of FIG. 6.
FIG. 6.

2D histograms of the probability of reentrant dynamics removal as a function of the two parameters and (see text for explanation) for E = 1 V/cm. The top, middle, and bottom rows are for monophasic, biphasic I, and biphasic II, respectively. Subscripts denote different reentrant dynamics removal mechanisms: DB = 1, An = 2, De = 3, and the total for all mechanisms = a. Note that the fourth mechanisms (DA) is not present at low energies and is therefore not shown in this figure.

Image of FIG. 7.
FIG. 7.

Same as Fig. 6 for E = 3 V/cm.

Image of FIG. 8.
FIG. 8.

Same as Fig. 6 for E = 5 V/cm. Note that DB mechanism is not shown here because it is vanishingly small. The histogram for the DA mechanism (sub-index = 4) is shown instead.

Image of FIG. 9.
FIG. 9.

Same as Fig. 8 for E = 7 V/cm.

Image of FIG. 10.
FIG. 10.

Histograms showing the time distribution of the disappearance of the last surviving wavefront in the simulations for four shock energy levels (a)–(d), corresponding to  = 1, 3, 5, and 7 V/cm, respectively. For each group (a)–(d), the upper, medium and lower sub-graphs indicate monophasic, biphasic I and biphasic II, respectively. The vertical scale of the histogram is in thousands of shock events. The bars all have 20 ms horizontal width. Note that the total number of events for all the subgraphs is the same (160 000). The bar colors indicate the mechanism by which reentrant dynamics removal occurred: DB (purple); An (yellow); De (blue); DA (orange).

Tables

Generic image for table
Table I.

Classification of the outcomes of reentrant dynamics removal obtained by the ANN analysis for shocks of four different levels of energy. The probability (in percents) and its standard deviation (in parentheses) is given for each outcome.

Generic image for table
Table II.

This table gives the confidence intervals (with α = 0.01) for the electric fields needed to get 50% ( ) and 90% ( ) of successful reentrant dynamics removal, respectively. The second column gives the fitting parameters of all the simulation data with a logistic curve (see Eq. (9) ). The standard error for each of the fitting parameter is also given (small sub-indices in parentheses next to each parameter).

Generic image for table
Table III.

A comparison of the medians of the distribution (corresponding to all the box plots shown in Fig. 5 ) for the three protocols at different energies. The statistical comparison is realized through a pairwise Wilcoxon rank sum test for equal medians. The comparison is then translated into a Z-score in order to see the significant differences more clearly.

Generic image for table
Table IV.

The χ2 goodness-of-fit test of the default null hypothesis that the data are a random sample from a normal distribution with mean and variance estimated from the data. The notation “1” means that the null hypothesis can be rejected at the α = 0.05 significance level, while “0” means that the null hypothesis cannot be rejected. The p-values are also given in parentheses.

Loading

Article metrics loading...

/content/aip/journal/chaos/23/4/10.1063/1.4829632
2013-11-12
2014-04-16
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/4/10.1063/1.4829632
10.1063/1.4829632
SEARCH_EXPAND_ITEM