1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/23/4/10.1063/1.4833115
1.
1. N. Ferguson, B. Schneier, and T. Kohno, Cryptography Engineering: Design Principles and Practical Applications (Wiley, 2010).
2.
2. R. M. Nguimdo, P. Colet, L. Larger, and L. Pesquera, “ Digital Key for Chaos Communication Performing Time Delay Concealment,” Phys. Rev. Lett. 107, 034103 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.034103
3.
3. R. M. Nguimdo and P. Colet, “ Electro-optic phase chaos systems with an internal variable and a digital key,” Opt. Express 20, 25333 (2012).
http://dx.doi.org/10.1364/OE.20.025333
4.
4. C. R. S. Williams, J. C. Salevan, X.-W. Li, R. Roy, and T. E. Murphy, “ Fast physical random number generator using amplified spontaneous emission,” Opt. Express 18, 23584 (2010).
http://dx.doi.org/10.1364/OE.18.023584
5.
5. X. Li, A. B. Cohen, T. E. Murphy, and R. Roy, “ Scalable parallel physical random number generator based on a superluminescent LED,” Opt. Lett. 36, 1020 (2011).
http://dx.doi.org/10.1364/OL.36.001020
6.
6. H. Guo, W. Tang, Y. Liu, and W. Wei, “ Truly random number generation based on measurement of phase noise of a laser,” Phys. Rev. E 81, 051137 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.051137
7.
7. T. Yamazaki and A. Uchida, “ Performance of random number generators using noise-based superluminescent diode and chaos-based semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 0600309 (2013).
http://dx.doi.org/10.1109/JSTQE.2013.2246777
8.
8. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “ Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2, 728 (2008).
http://dx.doi.org/10.1038/nphoton.2008.227
9.
9. N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “ Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett. 36, 4632 (2011).
http://dx.doi.org/10.1364/OL.36.004632
10.
10. R. M. Nguimdo, G. Verschaffelt, J. Danckaert, X. Leijtens, J. Bolk, and G. Van der Sande, “ Fast random bit generation based on a single chaotic semiconductor ring laser,” Opt. Express 20, 28603 (2012).
http://dx.doi.org/10.1364/OE.20.028603
11.
11. T. Symul, S. M. Assad, and P. K. Lam, “ Real time demonstration of high bitrate quantum random number generation with coherent laser light,” Appl. Phys. Lett. 98, 231103 (2011).
http://dx.doi.org/10.1063/1.3597793
12.
12. A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “ Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express 18, 18763 (2010).
http://dx.doi.org/10.1364/OE.18.018763
13.
13. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2003).
14.
14. T. Harayama, S. Sunada, K. Yoshimura, J. Muramatsu, K. Arai, A. Uchida, and P. Davis, “ Theory of fast nondeterministic physical random-bit generation with chaotic lasers,” Phys. Rev. E 85, 046215 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.046215
15.
15. X. Fang, B. Wetzel, J.-M. Merolla, J. M. Dudley, L. Larger, C. Guyeux, and J. M. Bahi, “ Noise and chaos contributions in fast random bit sequence generated from broadband optoelectronic entropy sources,” IEEE Trans. Circuits Syst., I: Regul. Pap. (to be published).
16.
16. M. Yalcin, J. Suykens, and J. Vandewalle, “ True random bit generation from a double-scroll attractor,” IEEE Trans. Circuits Syst., I: Regul. Pap. 51, 1395 (2004).
http://dx.doi.org/10.1109/TCSI.2004.830683
17.
17. G. S. Yim, J.-W. Ryu, Y.-J. Park, S. Rim, S.-Y. Lee, W.-H. Kye, and C.-M. Kim, “ Chaotic behaviors of operational amplifiers,” Phys. Rev. E 69, 045201 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.045201
18.
18. B. Muthuswamy and L. O. Chua, “ Simplest chaotic circuit,” Int. J. Bifurcation Chaos 20, 1567 (2010).
http://dx.doi.org/10.1142/S0218127410027076
19.
19. A. Wan and J. Wei, “ Bifurcation analysis of Mackey-Glass electronic circuits model with delayed feedback,” Nonlinear Dyn. 57, 85 (2009).
http://dx.doi.org/10.1007/s11071-008-9422-7
20.
20. M. A. Zidan, A. G. Radwan, and K. N. Salama, in Proceedings of the 54th International Midwest Symposium on Circuits and Systems (MWS-CAS 11), 2011.
21.
21. L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “ Information processing using a single dynamical node as complex system,” Nature Commun. 2, 468 (2011).
http://dx.doi.org/10.1038/ncomms1476
22.
22. R. Tchitnga, H. B. Fotsin, B. Nana, P. H. Louodop Fotso, and P. Woafo, “ Hartley's oscillator: The simplest chaotic two-component circuit,” Chaos, Solitons Fractals 45, 306 (2012).
http://dx.doi.org/10.1016/j.chaos.2011.12.017
23.
23. R. Tchitnga, P. Louodop, H. Fotsin, P. Woafo, and A. Fomethe, “ Synchronization of simplest two-component Hartley's chaotic circuits: influence of channel,” Nonlinear Dyn. 74(4), 10651075 (2013).
http://dx.doi.org/10.1007/s11071-013-1024-3
24.
24. C. Bandt and B. Pompe, “ Permutation entropy: a natural complexity measure for time series,” Phys. Rev. Lett. 88, 174102 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.174102
25.
25. L. Zunino, O. A. Rosso, and M. C. Soriano, “ Characterizing the hyperchaotic dynamics of a semiconductor laser subject to optical feedback via permutation entropy,” IEEE J. Sel. Top. Quantum Electron. 17, 1250 (2011).
http://dx.doi.org/10.1109/JSTQE.2011.2145359
26.
26. A. Elshabini-Riad, F. W. Stephenson, and I. A. Bhutta, “ Electrical equivalent circuit models and device simulators for semiconductor devices,” in The Electrical Engineering Handbook, edited by R. C. Dorf (CRC Press LLC, Boca Raton, 2000).
27.
27. X.-Z. Li and S.-C. Chan, “ Heterodyne random bit generation using an optically injected semiconductor laser in chaos,” IEEE J. Quantum Electron. 49, 829838 (2013).
http://dx.doi.org/10.1109/JQE.2013.2279261
28.
28. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “ Towards the generation of random bits at terahertz rates based on a chaotic semiconductor laser,” J. Phys.: Conf. Ser. 233, 012002 (2010).
http://dx.doi.org/10.1088/1742-6596/233/1/012002
29.
29. A. Argyris, E. Pikasis, S. Deligiannidis, and D. Syvridis, “ Sub-Tb/s physical random bit generators based on direct detection of amplified spontaneous emission signals,” J. Lightwave Technol. 30, 1329 (2012).
http://dx.doi.org/10.1109/JLT.2012.2188377
30.
30. K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “ Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45, 1367 (2009).
http://dx.doi.org/10.1109/JQE.2009.2031310
31.
31. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, and M. Levenson, “ A statistical test suite for random and pseudo-random number generators for cryptographic applications,” Natl. Inst. Standards and Technology, Special Publication 800-22, 2001, revision 1, 2010.
32.
32. S. Sunada, T. Harayama, P. Davis, K. Tsuzuki, K. Arai, K. Yoshimura, and A. Uchida, “ Noise amplification by chaotic dynamics in a delayed feedback laser system and its application to nondeterministic random bit generation,” Chaos 22, 047513 (2012).
http://dx.doi.org/10.1063/1.4754872
33.
33. N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “ Fast random bit generation using a chaotic laser: approaching the information theoretic limit,” IEEE J. Quantum Electron. 49, 910 (2013).
http://dx.doi.org/10.1109/JQE.2013.2280917
34.
34. Y. Akizawa, T. Yamazaki, A. Uchida, T. Harayama, S. Sunada, K. Arai, K. Yoshimura, and P. Davis, “ Fast random number generation with bandwidth-enhanced chaotic semiconductor lasers at 8 × 50 Gb/s,” IEEE Photon. Technol. Lett. 24, 1042 (2012).
http://dx.doi.org/10.1109/LPT.2012.2193388
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/4/10.1063/1.4833115
Loading
/content/aip/journal/chaos/23/4/10.1063/1.4833115
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/23/4/10.1063/1.4833115
2013-11-20
2015-05-06

Abstract

We numerically investigate the possibility of using a coupling to increase the complexity in simplest chaotic two-component electronic circuits operating at high frequency. We subsequently show that complex behaviors generated in such coupled systems, together with the post-processing are suitable for generating bit-streams which pass all the NIST tests for randomness. The electronic circuit is built up by unidirectionally coupling three two-component (one active and one passive) oscillators in a ring configuration through resistances. It turns out that, with such a coupling, high chaotic signals can be obtained. By extracting points at fixed interval of 10 ns (corresponding to a bit rate of 100 Mb/s) on such chaotic signals, each point being simultaneously converted in 16-bits (or 8-bits), we find that the binary sequence constructed by including the 10(or 2) least significant bits pass statistical tests of randomness, meaning that bit-streams with random properties can be achieved with an overall bit rate up to Mb/s (or Mb/s Megabit/s). Moreover, by varying the bias voltages, we also investigate the parameter range for which more complex signals can be obtained. Besides being simple to implement, the two-component electronic circuit setup is very cheap as compared to optical and electro-optical systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/23/4/1.4833115.html;jsessionid=1kk7alypnsc89.x-aip-live-03?itemId=/content/aip/journal/chaos/23/4/10.1063/1.4833115&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dynamics of coupled simplest chaotic two-component electronic circuits and its potential application to random bit generation
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/4/10.1063/1.4833115
10.1063/1.4833115
SEARCH_EXPAND_ITEM