1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Complex dynamics of a nonlinear voter model with contrarian agents
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/23/4/10.1063/1.4851175
1.
1. S. F. C. Castellano, S. Fortunato, and V. Loreto, Rev. Mod. Phys. 81, 591 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.591
2.
2. S. Galam, Sociophysics: A Physicist's Modeling of Psycho-political Phenomena (Springer, New York, 2012).
3.
3. T. M. Liggett, Interacting Particle Systems (Springer, New York, 1985).
4.
4. S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, 2001).
5.
5. P. L. Krapivsky, S. Redner, and E. Ben-Naim, A Kinetic View of Statistical Physics (Cambridge University Press, Cambridge, 2010).
6.
6. Q. Li, L. A. Braunstein, S. Havlin, and H. E. Stanley, Phys. Rev. E 84, 066101 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.066101
7.
7. S. Galam, Physica A 333, 453 (2004).
http://dx.doi.org/10.1016/j.physa.2003.10.041
8.
8. D. Stauffer and J. S. S. Martins, Physica A 334, 558 (2004).
http://dx.doi.org/10.1016/j.physa.2003.12.003
9.
9. C. Borghesi and S. Galam, Phys. Rev. E 73, 066118 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.066118
10.
10. C. Castellano, M. A. Muñoz, and R. Pastor-Satorras, Phys. Rev. E 80, 041129 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.041129
11.
11. M. S. de la Lama, J. M. López, and H. S. Wio, Europhys. Lett. 72, 851 (2005).
http://dx.doi.org/10.1209/epl/i2005-10299-3
12.
12. R. Huckfeldt, P. E. Johnson, and J. Sprague, Political Disagreement: The Survival of Diverse Opinions within Communication Networks (Cambridge University Press, Cambridge, 2004).
13.
13. N. Masuda, N. Gibert, and S. Redner, Phys. Rev. E 82, 010103 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.010103
14.
14. N. Masuda and S. Redner, J. Stat. Mech. L02002 (2011); see http://iopscience.iop.org/1742-5468/2011/02/L02002.
15.
15. S. Galam, Physica A 238, 66 (1997).
http://dx.doi.org/10.1016/S0378-4371(96)00456-6
16.
16. N. Gantert, M. Löwe, and J. E. Steif, Ann. I.H.P. Probab. Stat. 41, 767 (2005).
http://dx.doi.org/10.1016/j.anihpb.2004.03.007
17.
17. K. E. Kürten, Int. J. Mod. Phys. B 22, 4674 (2008).
http://dx.doi.org/10.1142/S0217979208050425
18.
18. A. C. R. Martins and C. D. Kuba, Adv. Complex Syst. 13, 621 (2010).
http://dx.doi.org/10.1142/S0219525910002773
19.
19. P. Nyczka and K. Sznajd-Weron, J. Stat. Phys. 151, 174 (2013); see http://link.springer.com/article/10.1007/s10955-013-0701-4.
20.
20. N. Masuda, Phys. Rev. E 88, 052803 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.052803
21.
21. H. Hong and S. H. Strogatz, Phys. Rev. Lett. 106, 054102 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.054102
22.
22. H. Hong and S. H. Strogatz, Phys. Rev. E 84, 046202 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.046202
23.
23. V. H. P. Louzada, N. A. M. Araújo, J. S. Andrade Jr., and H. J. Herrmann, Sci. Rep. 2, 658 (2012); see http://www.nature.com/srep/2012/120917/srep00658/full/srep00658.html.
24.
24. S. Galam, Glob. Econ. Manage. Rev. 18, 2 (2013).
http://dx.doi.org/10.1016/S2340-1540(13)70002-1
25.
25. R. Lambiotte, S. Thurner, and R. Hanel, Phys. Rev. E 76, 046101 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.046101
26.
26. W. L. Miller and M. Mackie, Polit. Stud. 21, 263 (1973).
http://dx.doi.org/10.1111/j.1467-9248.1973.tb01159.x
27.
27. C. Jeffery and D. Hough, Ger. Polit. 10, 73 (2001).
http://dx.doi.org/10.1080/772713264
28.
28. G. I. Bischi, R. Dieci, G. Rodano, and E. Saltari, J. Evol. Econ. 11, 527 (2001).
http://dx.doi.org/10.1007/s191-001-8320-9
29.
29. A. Agliari, R. Dieci, and L. Gardini, J. Econ. Behav. Organ. 62, 324 (2007).
http://dx.doi.org/10.1016/j.jebo.2005.07.009
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/4/10.1063/1.4851175
Loading
/content/aip/journal/chaos/23/4/10.1063/1.4851175
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/23/4/10.1063/1.4851175
2013-12-20
2014-11-26

Abstract

We investigate mean-field dynamics of a nonlinear opinion formation model with congregator and contrarian agents. Each agent assumes one of the two possible states. Congregators imitate the state of other agents with a rate that increases with the number of other agents in the opposite state, as in the linear voter model and nonlinear majority voting models. Contrarians flip the state with a rate that increases with the number of other agents in the same state. The nonlinearity controls the strength of the majority voting and is used as a main bifurcation parameter. We show that the model undergoes a rich bifurcation scenario comprising the egalitarian equilibrium, two symmetric lopsided equilibria, limit cycle, and coexistence of different types of stable equilibria with intertwining attractive basins.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/23/4/1.4851175.html;jsessionid=3g85wk6c32n04.x-aip-live-02?itemId=/content/aip/journal/chaos/23/4/10.1063/1.4851175&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Complex dynamics of a nonlinear voter model with contrarian agents
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/4/10.1063/1.4851175
10.1063/1.4851175
SEARCH_EXPAND_ITEM