1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Introduction to Focus Issue: Rhythms and Dynamic Transitions in Neurological Disease: Modeling, Computation, and Experiment
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/23/4/10.1063/1.4856276
1.
1. G. Buzsáki and A. Draguhn, “Neuronal oscillations in cortical networks,” Science 304, 19261929 (2004).
http://dx.doi.org/10.1126/science.1099745
2.
2. G. Buzsáki, Rhythms of the Brain (Oxford University Press, 2006).
3.
3. S. Coombes, “Waves, bumps, and patterns in neural field theories,” Biol. Cybern. 93, 91108 (2005).
http://dx.doi.org/10.1007/s00422-005-0574-y
4.
4. G. B. Ermentrout and J. D. Cowan, “A mathematical theory of visual hallucination patterns,” Biol. Cybern. 34, 137150 (1979).
http://dx.doi.org/10.1007/BF00336965
5.
5. R. D. Traub and M. A. Whittington, Cortical Oscillations in Health and Disease (Oxford University Press, 2010).
6.
6. R. D. Traub and R. Miles, “Pyramidal cell-to-inhibitory cell spike transduction explicable by active dendritic conductances in inhibitory cell,” J. Comput. Neurosci. 2, 291298 (1995).
http://dx.doi.org/10.1007/BF00961441
7.
7. X. J. Wang, “Neurophysiological and computational principles of cortical rhythms in cognition,” Physiol. Rev. 90, 11951268 (2010).
http://dx.doi.org/10.1152/physrev.00035.2008
8.
8. R. D. Traub, J. G. R. Jefferys, and M. A. Whittington, Fast Oscillations in Cortical Circuits (The MIT Press, 1999).
9.
9. J. O'Keefe and M. L. Recce, “Phase relationship between hippocampal place units and the EEG theta rhythm,” Hippocampus 3, 317330 (1993).
http://dx.doi.org/10.1002/hipo.450030307
10.
10. S. Raghavachari, J. J. Kahana, D. S. Rizzuto, J. B. Caplan, M. P. Kirschen, M. Bourgeois, J. R. Madsen, and J. E. Lisman, “Gating of human theta oscillations by a working memory task,” J. Neurosci. 21, 31753183 (2001).
11.
11. A. K. Engel, P. Fries, and W. Singer, “Dynamic predictions: Oscillations and synchrony in top-down processing,” Nat. Rev. Neurosci. 2, 704716 (2001).
http://dx.doi.org/10.1038/35094565
12.
12. W. Singer and C. Gray, “Visual feature integration and the temporal correlation hypothesis,” Annu. Rev. Neurosci. 18, 555586 (1995).
http://dx.doi.org/10.1146/annurev.ne.18.030195.003011
13.
13. V. N. Murthy and E. E. Fetz, “Oscillatory activity in sensorimotor cortex of awake monkeys: Synchronization of local field potentials and relation to behavior,” J. Neurophysiol. 76, 39493967 (1996).
14.
14. J. Sanes and J. Donoghue, “Oscillations in local field potentials of the primate motor cortex during voluntary movement,” Proc. Natl. Acad. Sci. U.S.A. 90, 44704474 (1993).
http://dx.doi.org/10.1073/pnas.90.10.4470
15.
15. G. B. Ermentrout and D. Kleinfeld, “Traveling electrical waves in cortex: Insights from phase dynamics and speculation on a computational role,” Neuron 29, 3344 (2001).
http://dx.doi.org/10.1016/S0896-6273(01)00178-7
16.
16. D. Golomb and Y. Amitai, “Propagating neuronal discharges in neocortical slices: Computational and experimental study,” J. Neurophysiol. 78, 11991211 (1997).
17.
17. A. Schnitzler and J. Gross, “Normal and pathological oscillatory communication in the brain,” Nat. Rev. Neurosci. 6, 285296 (2005).
http://dx.doi.org/10.1038/nrn1650
18.
18. F. A. Gibbs, E. L. Gibbs, and W. G. Lennox, “Epilepsy: A paroxysmal cerebral dysrhythmia,” Epilepsy behav. 3, 395401 (2002).
http://dx.doi.org/10.1016/S1525-5050(02)00050-1
19.
19. K. M. Spencer, P. G. Nestor, M. A. Niznikiewicz, D. F. Salisbury, M. E. Shenton, and R. W. McCarley, “Abnormal neural synchrony in schizophrenia,” J. Neurosci. 23, 74077411 (2003).
20.
20. C. S. Herrmann and T. Demiralp, “Human EEG gamma oscillations in neuropsychiatric disorders,” J. Clin. Neurophysiol. 116, 27192733 (2005).
http://dx.doi.org/10.1016/j.clinph.2005.07.007
21.
21. A. K. Roopun, M. A. Kramer, L. M. Carracedo, M. Kaiser, C. H. Davies, R. D. Traub, N. J. Kopell, and M. A. Whittington, “Period concatenation underlies interaction between gamma and beta rhythms in neocortex,” Front. Cell. Neurosci. 2, 18 (2008).
22.
22. D. Vierling-Claassen, P. Siekmeier, S. Stufflebeam, and N. Kopell, “Modeling GABA alterations in schizophrenia: A link between impaired inhibition and altered gamma and beta range auditory entrainment,” J. Neurophysiol. 99, 26562671 (2008).
http://dx.doi.org/10.1152/jn.00870.2007
23.
23. J. Jeong, “EEG dynamics in patients with Alzheimer's disease,” J. Clin. Neurophysiol. 115, 14901505 (2004).
http://dx.doi.org/10.1016/j.clinph.2004.01.001
24.
24. J. L. W. Bosboom, D. Stoffers, C. J. Stam, B. W. van Dijk, J. Verbunt, H. W. Berendse, and E. C. Wolters, “Resting state oscillatory brain dynamics in Parkinson's disease: An MEG study,” Clin. Neurophysiol. 117, 25212531 (2006).
http://dx.doi.org/10.1016/j.clinph.2006.06.720
25.
25. R. J. Moran, N. Mallet, V. Litvak, R. J. Dolan, P. J. Magill, K. J. Friston, and P. Brown, “Alterations in brain connectivity underlying beta oscillations in parkinsonism,” PLoS Comput. Biol. 7, e1002124 (2011).
http://dx.doi.org/10.1371/journal.pcbi.1002124
26.
26. Y. Dagan, “Circadian rhythms sleep disorders (CRSD),” Sleep Med. Rev. 6, 4554 (2002).
http://dx.doi.org/10.1053/smrv.2001.0190
27.
27. E. Urrestarazu, R. Chander, F. Dubeau, and J. Gotman, “Interictal high-frequency oscillations (100-500 hz) in the intracerebral EEG of epileptic patients,” Brain 130, 23542366 (2007).
http://dx.doi.org/10.1093/brain/awm149
28.
28. R. D. Traub, “Fast oscillations and epilepsy,” Epilepsy Curr. 3, 7779 (2003).
http://dx.doi.org/10.1046/j.1535-7597.2003.03301.x
29.
29. G. Alarcon, C. D. Binnie, R. D. Elwes, and C. E. Polkey, “Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy,” Electroencephalogr. Clin. Neurophysiol. 94, 326337 (1995).
http://dx.doi.org/10.1016/0013-4694(94)00286-T
30.
30. R. S. Fisher, W. R. Webber, R. P. Lesser, S. Arroyo, and S. Uematsu, “High-frequency EEG activity at the start of seizures,” J. Clin. Neurophysiol. 9, 441448 (1992).
31.
31. R. S. Fisher and S. C. Schachter, “The postictal state: A neglected entity in the management of epilepsy,” Epilepsy Behav. 1, 5259 (2000).
http://dx.doi.org/10.1006/ebeh.2000.0023
32.
32. S. J. Schiff, D. Colella, G. M. Jacyna, E. Hughes, J. W. Creekmore, A. Marshall, M. Bozek-Kuzmicki, G. Benke, W. D. Gaillard, J. Conry, and S. R. Weinstein, “Brain chirps: Spectrographic signatures of epileptic seizures,” J. Clin. Neurophysiol. 111, 953958 (2000).
http://dx.doi.org/10.1016/S1388-2457(00)00259-5
33.
33. F. da Silva, W. Blanes, S. Kalitzin, J. Parra, P. Suffczynski, and D. N. Velis, “Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity,” Epilepsia 44, 7283 (2003).
http://dx.doi.org/10.1111/j.0013-9580.2003.12005.x
34.
34. L. Topolnik, M. Steriade, and I. Timofeev, “Partial cortical deafferentation promotes development of paroxysmal activity,” Cereb. Cortex 13, 883893 (2003).
http://dx.doi.org/10.1093/cercor/13.8.883
35.
35. K. Schindler, C. E. Elger, and K. Lehnertz, “Increasing synchronization may promote seizure termination: Evidence from status epilepticus,” J. Clin. Neurophysiol. 118, 19551968 (2007).
http://dx.doi.org/10.1016/j.clinph.2007.06.006
36.
36. M. A. Kramer, W. Truccolo, U. T. Eden, K. Q. Lepage, L. R. Hochberg, E. M. Eskandar, J. R. Madsen, J. W. Lee, A. Maheshwari, E. Halgren, C. J. Chu, and S. S. Cash, “Human seizures self-terminate across spatial scales via a critical transition,” Proc. Natl. Acad. Sci. U.S.A. 109, 2111621121 (2012).
http://dx.doi.org/10.1073/pnas.1210047110
37.
37. K. M. Spencer, P. G. Nestor, R. Perlmutter, M. A. Niznikiewicz, M. C. Klump, M. Frumin, M. E. Shenton, and R. W. McCarley, “Neural synchrony indexes disordered perception and cognition in schizophrenia,” Proc. Natl. Acad. Sci. U.S.A. 101, 1728817293 (2004).
http://dx.doi.org/10.1073/pnas.0406074101
38.
38. P. M. Rossini, C. Del Percio, P. Pasqualetti, E. Cassetta, G. Binetti, G. Dal Forno, F. Ferreri, G. Frisoni, P. Chiovenda, C. Miniussi, L. Parisi, M. Tombini, F. Vecchio, and C. Babiloni, “Conversion from mild cognitive impairment to Alzheimer's disease is predicted by sources and coherence of brain electroencephalography rhythms,” Neuroscience 143, 793803 (2006).
http://dx.doi.org/10.1016/j.neuroscience.2006.08.049
39.
39. J. Dauwels, F. Vialatte, T. Musha, and A. Cichocki, “A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG,” Neuroimage 49, 668693 (2010).
http://dx.doi.org/10.1016/j.neuroimage.2009.06.056
40.
40. D. Terman, J. E. Rubin, A. C. Yew, and C. J. Wilson, “Activity patterns in a model for the subthalamopallidal network of the basal ganglia,” J. Neurosci. 22, 29632976 (2002).
41.
41. M. D. Bevan, J. Mcgill, D. Terman, J. P. Bolam, and C. J. Wilson, “Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network,” Trends Neurosci. 25, 525531 (2002).
http://dx.doi.org/10.1016/S0166-2236(02)02235-X
42.
42. R. Courtemanche, N. Fujii, and A. M. Graybiel, “Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys,” J. Neurosci. 23, 1174111752 (2003).
43.
43. A. Priori, G. Foffani, A. Pesenti, F. Tamma, A. M. Bianchi, M. Pellegrini, M. Locatelli, K. A. Moxon, and R. M. Villani, “Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson's disease,” Exp. Neurol. 189, 369379 (2004).
http://dx.doi.org/10.1016/j.expneurol.2004.06.001
44.
44. M. M. McCarthy, S. Ching, M. A. Whittington, and N. Kopell, “Dynamical changes in neurological disease and anesthesia,” Curr. Opin. Neurobiol. 22, 693703 (2012).
http://dx.doi.org/10.1016/j.conb.2012.02.009
45.
45. M. M. McCarthy, C. Moore-Kochlacs, X. Gu, E. S. Boyden, X. Han, and N. Kopell, “Striatal origin of the pathologic beta oscillations in Parkinson's disease,” Proc. Natl. Acad. Sci. U.S.A. 108, 1162011625 (2011).
http://dx.doi.org/10.1073/pnas.1107748108
46.
46. M. M. McCarthy, E. N. Brown, and N. J. Kopell, “Potential network mechanisms mediating electroencephalographic beta rhythm changes during propofol-induced paradoxical excitation,” J. Neurosci. 28, 1348813504 (2008).
http://dx.doi.org/10.1523/JNEUROSCI.3536-08.2008
47.
47. J. Best, C. Diniz-Behn, G. R. Poe, and V. Booth, “Neuronal models for sleep-wake regulation and synaptic reorganization in the sleeping hippocampus,” J. Biol. Rhythms 22, 220232 (2007).
http://dx.doi.org/10.1177/0748730407301239
48.
48. M. Steriade, D. A. McCormick, and T. J. Sejnowski, “Thalamocortical oscillations in the sleeping and aroused brain,” Science 262, 679685 (1993).
http://dx.doi.org/10.1126/science.8235588
49.
49. J. Lim and D. F. Dinges, “Sleep deprivation,” Scholarpedia J. 2, 2433 (2007).
http://dx.doi.org/10.4249/scholarpedia.2433
50.
50. C. M. Morin and G. Belleville, “Insomnia,” Scholarpedia J. 3, 3314 (2008).
http://dx.doi.org/10.4249/scholarpedia.3314
51.
51. S. Nishino, “Narcolepsy,” Scholarpedia J. 2, 2425 (2007).
http://dx.doi.org/10.4249/scholarpedia.2425
52.
52. N. Hadjikhani, M. S. del Rio, O. Wu, W. D. Schwartz, D. Bakker, B. Fischi, K. K. Kwaong, F. M. Cutrer, B. R. Rosen, R. B. H. Tootell, A. G. Sorensen, and M. A. Moskowitz, “Mechanisms of migraine aura revealed by functional MRI in human visual cortex,” Proc. Natl. Acad. Sci. U.S.A. 98, 46874692 (2001).
http://dx.doi.org/10.1073/pnas.071582498
53.
53. K. Lashley, “Patterns of cerebral integration indicated by scotomas migraine,” Arch. Neurol. Psychiatr. 46, 331339 (1941).
http://dx.doi.org/10.1001/archneurpsyc.1941.02280200137007
54.
54. A. A. P. Leão, “Spreading depression of activity in the cerebral cortex,” J. Neurophysiol. 7, 359390 (1944).
55.
55. S. Kodandaramaiah, G. Franzesi, B. Chow, E. Boyden, and C. Forest, “Automated whole-cell patch-clamp electrophysiology of neurons in vivo,” Nat. Methods 9, 585587 (2012).
http://dx.doi.org/10.1038/nmeth.1993
56.
56. J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 15991605 (2011).
http://dx.doi.org/10.1038/nn.2973
57.
57. B. M. Zamft, A. H. Marblestone, K. Kording, D. Schmidt, D. Martin-Alarcon, E. Tyo, E. S. Boyden, and G. Church, “Measuring cation dependent DNA polymerase fidelity landscapes by deep sequencing,” PLoS ONE 7, e43876 (2012).
http://dx.doi.org/10.1371/journal.pone.0043876
58.
58. A. M. Lozano and N. Lipsman, “Probing and regulating dysfunctional circuits using deep brain stimulation,” Neuron 77, 406424 (2013).
http://dx.doi.org/10.1016/j.neuron.2013.01.020
59.
59. R. D. Traub, D. Contreras, M. O. Cunningham, H. Murray, F. E. LeBeau, A. Roopun, A. Bibbig, W. B. Wilent, M. J. Higley, and M. A. Whittington, “Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts,” J. Neurophysiol. 93, 21942232 (2005).
60.
60. M. W. Reimann, C. A. Anastassiou, R. Perin, S. Hill, H. Markram, and C. Koch, “A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents,” Neuron 79, 375390 (2013).
http://dx.doi.org/10.1016/j.neuron.2013.05.023
61.
61. O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71, 934 (2011).
http://dx.doi.org/10.1016/j.neuron.2011.06.004
62.
62. E. N. Brown, R. E. Kaas, and P. P. Mitra, “Multiple neural spike train data analysis: State-of-the-art and future challenges,” Nat. Neurosci. 7, 456461 (2004).
http://dx.doi.org/10.1038/nn1228
63.
63. R. M. Miura, H. Huang, and J. J. Wylie, “Mathematical approaches to modeling of cortical spreading depression,” Chaos 23, 046103 (2013).
http://dx.doi.org/10.1063/1.4821955
64.
64. M. A. Dahlem, “Migraine generator network and spreading depression dynamics as neuromodulation targets in episodic migraine,” Chaos 23, 046101 (2013).
http://dx.doi.org/10.1063/1.4813815
65.
65. A. Proddutur, J. Yu, F. S. Elgammal, and V. Santhakumar, “Seizure-induced alterations in fast-spiking basket cell gaba currents modulate frequency and coherence of gamma oscillation in network simulations,” Chaos 23, 046109 (2013).
http://dx.doi.org/10.1063/1.4830138
66.
66. J. Cabral, H. M. Fernandes, T. Van Hartevelt, A. C. James, M. L. Kringelbach, and G. Deco, “Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks,” Chaos 23, 046111 (2013).
http://dx.doi.org/10.1063/1.4851117
67.
67. H. G. Rotstein, “Abrupt and gradual transitions between low and hyperexcited firing frequencies in neuronal models with fast synaptic excitation: A comparative study,” Chaos 23, 046104 (2013).
http://dx.doi.org/10.1063/1.4824320
68.
68. S. Jalil, D. Allen, J. Youker, and A. Shilnikov, “Toward robust phase-locking in Melibe swim central pattern generator models,” Chaos 23, 046105 (2013).
http://dx.doi.org/10.1063/1.4825389
69.
69. D. Terman, J. E. Rubin, and C. O. Diekman, “Irregular activity arises as a natural consequence of synaptic inhibition,” Chaos 23, 046110 (2013).
http://dx.doi.org/10.1063/1.4831752
70.
70. X. Deng, E. N. Eskandar, and U. T. Eden, “A point process approach to identifying and tracking transitions in neural spiking dynamics in the subthalamic nucleus of Parkinson's patients,” Chaos 23, 046102 (2013).
http://dx.doi.org/10.1063/1.4818546
71.
71. F. K. Skinner and K. A. Ferguson, “Modeling oscillatory dynamics in brain microcircuits as a way to help uncover neurological disease mechanisms: A proposal,” Chaos 23, 046108 (2013).
http://dx.doi.org/10.1063/1.4829620
72.
72. H. Osinga and K. T. Tsaneva-Atanasova, “Geometric analysis of transient bursts,” Chaos 23, 046107 (2013).
http://dx.doi.org/10.1063/1.4826655
73.
73. M. Desroches, T. J. Kaper, and M. Krupa, “Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster,” Chaos 23, 046106 (2013).
http://dx.doi.org/10.1063/1.4827026
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/4/10.1063/1.4856276
Loading
/content/aip/journal/chaos/23/4/10.1063/1.4856276
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/23/4/10.1063/1.4856276
2013-12-23
2014-09-21

Abstract

Rhythmic neuronal oscillations across a broad range of frequencies, as well as spatiotemporal phenomena, such as waves and bumps, have been observed in various areas of the brain and proposed as critical to brain function. While there is a long and distinguished history of studying rhythms in nerve cells and neuronal networks in healthy organisms, the association and analysis of rhythms to diseases are more recent developments. Indeed, it is now thought that certain aspects of diseases of the nervous system, such as epilepsy, schizophrenia, Parkinson's, and sleep disorders, are associated with transitions or disruptions of neurological rhythms. This focus issue brings together articles presenting modeling, computational, analytical, and experimental perspectives about rhythms and dynamic transitions between them that are associated to various diseases.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/23/4/1.4856276.html;jsessionid=djmi4o9clbsdn.x-aip-live-02?itemId=/content/aip/journal/chaos/23/4/10.1063/1.4856276&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Introduction to Focus Issue: Rhythms and Dynamic Transitions in Neurological Disease: Modeling, Computation, and Experiment
http://aip.metastore.ingenta.com/content/aip/journal/chaos/23/4/10.1063/1.4856276
10.1063/1.4856276
SEARCH_EXPAND_ITEM