1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/24/1/10.1063/1.4858996
1.
1. Y. Kuramoto and D. Battogtokh, “ Coexistence of coherence and incoherence in nonlocally coupled phase oscillators,” Nonlinear Phenom. Complex Syst. 5, 380385 (2002).
2.
2. A. S. Mikhailov and K. Showalter, “ Control of waves, patterns and turbulence in chemical systems,” Phys. Rep. 425, 79194 (2006).
http://dx.doi.org/10.1016/j.physrep.2005.11.003
3.
3. D. M. Abrams and S. H. Strogatz, “ Chimera states for coupled oscillators,” Phys. Rev. Lett. 93, 174102 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.174102
4.
4. S.-i. Shima and Y. Kuramoto, “ Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators,” Phys. Rev. E 69, 036213 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.036213
5.
5. E. A. Martens, C. R. Laing, and S. H. Strogatz, “ Solvable model of spiral wave chimeras,” Phys. Rev. Lett. 104, 044101 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.044101
6.
6. G. C. Sethia, A. Sen, and F. M. Atay, “ Clustered chimera states in delay-coupled oscillator systems,” Phys. Rev. Lett. 100, 144102 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.144102
7.
7. D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, “ Solvable model for chimera states of coupled oscillators,” Phys. Rev. Lett. 101, 084103 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.084103
8.
8. I. Omelchenko, Y. Maistrenko, P. Hövel, and E. Schöll, “ Loss of coherence in dynamical networks: Spatial chaos and chimera states,” Phys. Rev. Lett. 106, 234102 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.234102
9.
9. I. Omelchenko, B. Riemenschneider, P. Hövel, Y. Maistrenko, and E. Schöll, “ Transition from spatial coherence to incoherence in coupled chaotic systems,” Phys. Rev. E 85, 026212 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.026212
10.
10. S. Nkomo, M. R. Tinsley, and K. Showalter, “ Chimera states in populations of nonlocally coupled chemical oscillators,” Phys. Rev. Lett. 110, 244102 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.244102
11.
11. I. Omelchenko, O. E. Omel'chenko, P. Hövel, and E. Schöll, “ When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states,” Phys. Rev. Lett. 110, 224101 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.224101
12.
12. N. C. Rattenborg, C. J. Amlaner, and S. L. Lima, “ Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep,” Neurosci. Biobehav. Rev. 24, 817842 (2000).
http://dx.doi.org/10.1016/S0149-7634(00)00039-7
13.
13. C. G. Mathews, J. A. Lesku, S. L. Lima, and C. J. Amlaner, “ Asynchronous eye closure as an anti-predator behavior in the western fence lizard (Sceloporus occidentalis),” Ethology 112, 286292 (2006).
http://dx.doi.org/10.1111/j.1439-0310.2006.01138.x
14.
14. T. P. Vogels, K. Rajan, and L. F. Abbott, “ Neural network dynamics,” Annu. Rev. Neurosci. 28, 357376 (2005).
http://dx.doi.org/10.1146/annurev.neuro.28.061604.135637
15.
15. D. Barkley and L. S. Tuckerman, “ Computational study of turbulent laminar patterns in Couette flow,” Phys. Rev. Lett. 94, 014502 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.014502
16.
16. M. R. Tinsley, N. Simbarashe, and K. Showalter, “ Chimera and phase-cluster states in populations of coupled chemical oscillators,” Nat. Phys. 8, 662665 (2012).
http://dx.doi.org/10.1038/nphys2371
17.
17. A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll, “ Experimental observation of chimeras in coupled-map lattices,” Nat. Phys. 8, 658661 (2012).
http://dx.doi.org/10.1038/nphys2372
18.
18. E. A. Martens, S. Thutupalli, A. Fourrire, and O. Hallatschek, “ Chimera states in mechanical oscillator networks,” Proc. Natl. Acad. Sci. U.S.A. (2013).
19.
19. I. Miethe, V. García-Morales, and K. Krischer, “ Irregular subharmonic cluster patterns in an autonomous photoelectrochemical oscillator,” Phys. Rev. Lett. 102, 194101 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.194101
20.
20. V. García-Morales, A. Orlov, and K. Krischer, “ Subharmonic phase clusters in the complex Ginzburg-Landau equation with nonlinear global coupling,” Phys. Rev. E 82, 065202 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.065202
21.
21. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Dover Publications, Inc., Mineola, New York, 2003).
22.
22. G. C. Sethia, A. Sen, and G. L. Johnston, “ Amplitude-mediated chimera states,” Phys. Rev. E 88, 042917 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.042917
23.
23. M. Wickramasinghe and I. Z. Kiss, “ Spatially organized dynamical states in chemical oscillator networks: Synchronization, dynamical differentiation, and chimera patterns,” PLoS One 8, e80586 (2013).
http://dx.doi.org/10.1371/journal.pone.0080586
24.
24. M. Wolfrum and O. E. Omel'chenko, “ Chimera states are chaotic transients,” Phys. Rev. E 84, 015201 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.015201
25.
25. O. E. Omel'chenko, Y. L. Maistrenko, and P. A. Tass, “ Chimera states: The natural link between coherence and incoherence,” Phys. Rev. Lett. 100, 044105 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.044105
26.
26. N. Nakagawa and Y. Kuramoto, “ From collective oscillations to collective chaos in a globally coupled oscillator system,” Physica D 75, 7480 (1994).
http://dx.doi.org/10.1016/0167-2789(94)90275-5
27.
27. H. Daido and K. Nakanishi, “ Diffusion-induced inhomogeneity in globally coupled oscillators: Swing-by mechanism,” Phys. Rev. Lett. 96, 054101 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.054101
28.
28. K. Kaneko, “ Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements,” Physica D 41, 137172 (1990).
http://dx.doi.org/10.1016/0167-2789(90)90119-A
29.
29. I. S. Aranson and L. Kramer, “ The world of the complex Ginzburg-Landau equation,” Rev. Mod. Phys. 74, 99143 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.99
30.
30. R. Memming and G. Schwandt, “ Anodic dissolution of silicon in hydrofluoric acid solutions,” Surf. Sci. 4, 109124 (1966).
http://dx.doi.org/10.1016/0039-6028(66)90071-9
31.
31. M. Matsumura and S. R. Morrison, “ Anodic properties of n-Si and n-Ge electrodes in HF solution under illumination and in the dark,” J. Electroanal. Chem. 147, 157166 (1983).
http://dx.doi.org/10.1016/S0022-0728(83)80063-1
32.
32. S. Cattarin, I. Frateur, M. Musiani, and B. Tribollet, “ Electrodissolution of p-Si in acidic fluoride media: Modeling of the steady state,” J. Electrochem. Soc. 147, 32773282 (2000).
http://dx.doi.org/10.1149/1.1393895
33.
33. X. G. Zhang, Electrochemistry of Silicon and Its Oxides (Kluwer Academic, New York, 2001).
34.
34. D. J. Blackwood, A. Borazio, R. Greef, L. M. Peter, and J. Stuper, “ Electrochemical and optical studies of silicon dissolution in ammonium fluoride solutions,” Electrochim. Acta 37, 889896 (1992).
http://dx.doi.org/10.1016/0013-4686(92)85040-R
35.
35. J.-N. Chazalviel, C. da Fonseca, and F. Ozanam, “ In situ infrared study of the oscillating anodic dissolution of silicon in fluoride electrolytes,” J. Electrochem. Soc. 145, 964973 (1998).
http://dx.doi.org/10.1149/1.1838373
36.
36. F. Yahyaoui, T. Dittrich, M. Aggour, J.-N. Chazalviel, F. Ozanam, and J. Rappich, “ Etch rates of anodic silicon oxides in dilute fluoride solutions,” J. Electrochem. Soc. 150, B205B210 (2003).
http://dx.doi.org/10.1149/1.1563652
37.
37. J.-N. Chazalviel, “ Ionic processes through the interfacial oxide in the anodic dissolution of silicon,” Electrochim. Acta 37, 865875 (1992).
http://dx.doi.org/10.1016/0013-4686(92)85038-M
38.
38. M. Aggour, M. Giersig, and H. Lewerenz, “ Interface condition of n-Si(111) during photocurrent oscillations in NH4F solutions,” J. Electroanal. Chem. 383, 6774 (1995).
http://dx.doi.org/10.1016/0022-0728(94)03723-G
39.
39. H. H. Rotermund, G. Haas, R. U. Franz, R. M. Tromp, and G. Ertl, “ Imaging pattern formation in surface reactions from ultrahigh vacuum up to atmospheric pressure,” Science 270, 608610 (1995).
http://dx.doi.org/10.1126/science.270.5236.608
40.
40. I. Miethe, “ Spatio-temporal pattern formation during the anodic electrodissolution of silicon in ammonium fluoride solution,” PhD Thesis (TU München, 2010).
41.
41. K. Krischer, H. Varela, A. Bîrzu, F. Plenge, and A. Bonnefont, “ Stability of uniform electrode states in the presence of ohmic drop compensation,” Electrochim. Acta 49, 103115 (2003).
http://dx.doi.org/10.1016/j.electacta.2003.04.006
42.
42. A. De Wit, D. Lima, G. Dewel, and P. Borckmans, “ Spatiotemporal dynamics near a codimension-two point,” Phys. Rev. E 54, 261271 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.261
43.
43. D. Battogtokh, A. Preusser, and A. Mikhailov, “ Controlling turbulence in the complex Ginzburg-Landau equation II. Two-dimensional systems,” Physica D 106, 327362 (1997).
http://dx.doi.org/10.1016/S0167-2789(97)00046-8
44.
44. H. Varela, C. Beta, A. Bonnefont, and K. Krischer, “ A hierarchy of global coupling induced cluster patterns during the oscillatory H2-electrooxidation reaction on a Pt ring-electrode,” Phys. Chem. Chem. Phys. 7, 24292439 (2005).
http://dx.doi.org/10.1039/B502027A
45.
45. V. K. Vanag, A. M. Zhabotinsky, and I. R. Epstein, “ Pattern formation in the Belousov–Zhabotinsky reaction with photochemical global feedback,” J. Phys. Chem. A 104, 1156611577 (2000).
http://dx.doi.org/10.1021/jp002390h
46.
46. M. Kim, M. Bertram, M. Pollmann, A. von Oertzen, A. S. Mikhailov, H. H. Rotermund, and G. Ertl, “ Controlling chemical turbulence by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110),” Science 292, 13571360 (2001).
http://dx.doi.org/10.1126/science.1059478
47.
47. M. Pollmann, M. Bertram, and H. H. Rotermund, “ Influence of time delayed global feedback on pattern formation in oscillatory CO oxidation on Pt(110),” Chem. Phys. Lett. 346, 123128 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00936-8
48.
48. I. Z. Kiss, Y. Zhai, and J. L. Hudson, “ Predicting mutual entrainment of oscillators with experiment-based phase models,” Phys. Rev. Lett. 94, 248301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.248301
49.
49. S. M. Cox and P. C. Matthews, “ Exponential time differencing for stiff systems,” J. Comput. Phys. 176, 430455 (2002).
http://dx.doi.org/10.1006/jcph.2002.6995
50.
50. K. Schönleber and K. Krischer, “ High-amplitude versus low-amplitude current oscillations during the anodic oxidation of p-type silicon in fluoride containing electrolytes,” Chem. Phys. Chem. 13, 29892996 (2012).
http://dx.doi.org/10.1002/cphc.201200230
http://aip.metastore.ingenta.com/content/aip/journal/chaos/24/1/10.1063/1.4858996
Loading
/content/aip/journal/chaos/24/1/10.1063/1.4858996
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/24/1/10.1063/1.4858996
2014-01-08
2015-04-19

Abstract

We report a novel mechanism for the formation of chimera states, a peculiar spatiotemporal pattern with coexisting synchronized and incoherent domains found in ensembles of identical oscillators. Considering Stuart-Landau oscillators, we demonstrate that a nonlinear global coupling can induce this symmetry breaking. We find chimera states also in a spatially extended system, a modified complex Ginzburg-Landau equation. This theoretical prediction is validated with an oscillatory electrochemical system, the electro-oxidation of silicon, where the spontaneous formation of chimeras is observed without any external feedback control.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/24/1/1.4858996.html;jsessionid=472sao5ohrfe3.x-aip-live-06?itemId=/content/aip/journal/chaos/24/1/10.1063/1.4858996&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling
http://aip.metastore.ingenta.com/content/aip/journal/chaos/24/1/10.1063/1.4858996
10.1063/1.4858996
SEARCH_EXPAND_ITEM