1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Impact of network topology on synchrony of oscillatory power grids
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/24/1/10.1063/1.4865895
1.
1. D. Butler, Nature 445, 586 (2007).
http://dx.doi.org/10.1038/445586a
2.
2. A. E. Motter, S. Myers, M. Anghel, and T. Nishikawa, Nat. Phys. 9, 191 (2013).
http://dx.doi.org/10.1038/nphys2535
3.
3. M. Rohden, A. Sorge, M. Timme, and D. Witthaut, Phys. Rev. Lett. 109, 064101 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.064101
4.
4. S. Lozano, L. Buzna, and A. Diaz-Guilera, Eur. Phys. J. B 85, 231 (2012).
http://dx.doi.org/10.1140/epjb/e2012-30209-9
5.
5. G. Filatrella, A. H. Nielsen, and N. F. Pedersen, Eur. Phys. J. B 61, 485 (2008).
http://dx.doi.org/10.1140/epjb/e2008-00098-8
6.
6. A. E. Motter and Y.-C. Lai, Phys. Rev. E 66, 065102 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.065102
7.
7. M. Schäfer, J. Scholz, and M. Greiner, Phys. Rev. Lett. 96, 108701 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.108701
8.
8. I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, and D. Helbing, Phys. Rev. Lett. 100, 218701 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.218701
9.
9. D. Heide, M. Schäfer, and M. Greiner, Phys. Rev. E 77, 056103 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.056103
10.
10.See, e.g., http://www.energy.siemens.com for the power system simulation packages PSS/E or http://www.eurostag.be for EUROSTAG.
11.
11. P. Kundur, Power System Stability and Control (McGraw-Hill, New York, 1994).
12.
12. J. Machowski, J. Bialek, and J. Bumby, Power System Dynamics: Stability and Control (Wiley, 2009), p. 172.
13.
13. F. Dörfler and F. Bullo, SIAM J. Control Optim. 50(3), 1616 (2012).
http://dx.doi.org/10.1137/110851584
14.
14. H. Risken, The Fokker-Planck Equation (Springer, Berlin, Heidelberg, 1996).
15.
15. D. J. Watts and S. H. Strogatz, “ Collective Dynamics of ‘Small-World’ Networks,” Nature 393, 440 (1998).
http://dx.doi.org/10.1038/30918
16.
16. F. Dörfler and F. Bullo, SIAM J. Appl. Dyn. Syst. 10, 1070 (2011).
http://dx.doi.org/10.1137/10081530X
17.
17. F. Dörfler, M. Chertkov, and F. Bullo, Proc. Natl. Acad. Sci. U.S.A. 110, 2005 (2013).
http://dx.doi.org/10.1073/pnas.1212134110
18.
18. S. H. Strogatz, Physica D 143, 1 (2000).
http://dx.doi.org/10.1016/S0167-2789(00)00094-4
19.
19. M. Timme, F. Wolf, and T. Geisel, Phys. Rev. Lett. 92, 074101 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.074101
20.
20. C. Grabow, S. Hill, S. Grosskinsky, and M. Timme, Europhys. Lett. 90, 48002 (2010).
http://dx.doi.org/10.1209/0295-5075/90/48002
21.
21. P. Menck, J. Heitzig, N. Marwan, and J. Kurths, Nat. Phys. 9, 89 (2013).
http://dx.doi.org/10.1038/nphys2516
22.
22. D. Witthaut and M. Timme, New J. Phys. 14, 083036 (2012).
http://dx.doi.org/10.1088/1367-2630/14/8/083036
23.
23. D. Witthaut and M. Timme, Eur. Phys. J. B 86, 377 (2013).
http://dx.doi.org/10.1140/epjb/e2013-40469-4
http://aip.metastore.ingenta.com/content/aip/journal/chaos/24/1/10.1063/1.4865895
Loading
/content/aip/journal/chaos/24/1/10.1063/1.4865895
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/24/1/10.1063/1.4865895
2014-02-20
2015-04-19

Abstract

Replacing conventional power sources by renewable sources in current power grids drastically alters their structure and functionality. In particular, power generation in the resulting grid will be far more decentralized, with a distinctly different topology. Here, we analyze the impact of grid topologies on spontaneous synchronization, considering regular, random, and small-world topologies and focusing on the influence of decentralization. We model the consumers and sources of the power grid as second order oscillators. First, we analyze the global dynamics of the simplest non-trivial (two-node) network that exhibit a synchronous (normal operation) state, a limit cycle (power outage), and coexistence of both. Second, we estimate stability thresholds for the collective dynamics of small network motifs, in particular, star-like networks and regular grid motifs. For larger networks, we numerically investigate decentralization scenarios finding that decentralization itself may support power grids in exhibiting a stable state for lower transmission line capacities. Decentralization may thus be beneficial for power grids, regardless of the details of their resulting topology. Regular grids show a specific sharper transition not found for random or small-world grids.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/24/1/1.4865895.html;jsessionid=83ejiqr9em07u.x-aip-live-03?itemId=/content/aip/journal/chaos/24/1/10.1063/1.4865895&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Impact of network topology on synchrony of oscillatory power grids
http://aip.metastore.ingenta.com/content/aip/journal/chaos/24/1/10.1063/1.4865895
10.1063/1.4865895
SEARCH_EXPAND_ITEM