1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Opinion formation on social media: An empirical approach
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/24/1/10.1063/1.4866011
1.
1. C. Castellano, S. Fortunato, and V. Loreto, Rev. Mod. Phys. 81, 591 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.591
2.
2. B. Latane, Am. Psychol. 36, 343 (1981).
http://dx.doi.org/10.1037/0003-066X.36.4.343
3.
3. S. Galam, Sociophysics: A Physicist's Modeling of Psycho-political Phenomena (Springer, 2012), Vol. 439, p. 297 illus. 261.
4.
4. V. Sood and S. Redner, Phys. Rev. Lett. 94, 178701 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.178701
5.
5. S. Galam, Physica A 274, 132 (1999).
http://dx.doi.org/10.1016/S0378-4371(99)00320-9
6.
6. S. Galam, Physica A 285, 66 (2000).
http://dx.doi.org/10.1016/S0378-4371(00)00272-7
7.
7. S. Galam, Y. Gefen, and Y. Shapir, J. Math. Sociol. 9, 1 (1982).
http://dx.doi.org/10.1080/0022250X.1982.9989929
8.
8. G. Weisbuch, G. Deffuant, F. Amblard, and J.-P. Nadal, Complexity 7, 55 (2002).
http://dx.doi.org/10.1002/cplx.10031
9.
9. R. Hegselmann and U. Krause, Journal of Artifical Societies and Social Simulation 5, 2 (2002), see http://jasss.soc.surrey.ac.uk/5/3/2.html.
10.
10. K. Sznajd-Weron and J. Sznajd, Int. J. Mod. Phys. C 11, 1157 (2000).
http://dx.doi.org/10.1142/S0129183100000936
11.
11. K. Sznajd-Weron, M. Tabiszewski, and A. M. Timpanaro, Europhys. Lett. 96, 48002 (2011).
http://dx.doi.org/10.1209/0295-5075/96/48002
12.
12. S. Galam, Physica A 238, 66 (1997).
http://dx.doi.org/10.1016/S0378-4371(96)00456-6
13.
13. R. Axelrod, J. Conflict Resolut. 41, 203 (1997).
http://dx.doi.org/10.1177/0022002797041002001
14.
14. S. Banisch and T. Araújo, Discontinuity, Nonlinearity, and Complexity 2, 57 (2012).
http://dx.doi.org/10.5890/DNC.2012.12.002
15.
15. B. Kozma and A. Barrat, Phys. Rev. E 77, 016102 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.016102
16.
16. D. Stauffer and M. Sahimi, Eur. Phys. J. B 57, 147 (2007).
http://dx.doi.org/10.1140/epjb/e2007-00106-7
17.
17. C. Qian, J. D. Cao, J. Q. Lu, and J. Kurths, Chaos 21, 025116 (2011).
http://dx.doi.org/10.1063/1.3602220
18.
18. H. U. Stark, C. J. Tessone, and F. Schweitzer, Phys. Rev. Lett. 101, 018701 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.018701
19.
19. R. Lambiotte, J. Saramaki, and V. D. Blondel, Phys. Rev. E 79, 046107 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.046107
20.
20. Y. Liu and F. Xiong, Phys. Lett. A 377, 362 (2013).
http://dx.doi.org/10.1016/j.physleta.2012.11.044
21.
21. N. G. F. Medeiros and A. T. C. Silva, Phys. Rev. E 73, 046120 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.046120
22.
22. A. C. R. Martins and S. Galam, Phys. Rev. E 87, 042807 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.042807
23.
23. S. Banisch and T. Araujo, Phys. Lett. A 374, 3197 (2010).
http://dx.doi.org/10.1016/j.physleta.2010.05.071
24.
24. P. Sobkowicz and A. Sobkowicz, Eur. Phys. J. B 73, 633 (2010).
http://dx.doi.org/10.1140/epjb/e2010-00039-0
25.
25. A. Chmiel, P. Sobkowicz, J. Sienkiewicz, G. Paltoglou, K. Buckley, M. Thelwall, and J. A. Holyst, Physica A 390, 2936 (2011).
http://dx.doi.org/10.1016/j.physa.2011.03.040
26.
26. A. C. R. Martins, Int. J. Mod. Phys. C 19, 617 (2008).
http://dx.doi.org/10.1142/S0129183108012339
27.
27. A. C. R. Martins, Phys. Rev. E 78, 036104 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.036104
28.
28. D. Centola, Science 329, 1194 (2010).
http://dx.doi.org/10.1126/science.1185231
29.
29. D. Centola, Science 334, 1269 (2011).
http://dx.doi.org/10.1126/science.1207055
30.
30. M. Salathé and S. Khandelwal, PLoS. Comput. Biol. 7, e1002199 (2011).
http://dx.doi.org/10.1371/journal.pcbi.1002199
31.
31. M. Salathé, D. Q. Vu, S. Khandelwal, and D. R. Hunter, EPJ Data Sci. 2, 1 (2013).
http://dx.doi.org/10.1140/epjds16
32.
32. J. Y. Guan, Z. X. Wu, and Y. H. Wang, Phys. Rev. E 76, 042102 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.042102
33.
33. R. Lambiotte, M. Ausloos, and J. A. Hołyst, Phys. Rev. E 75, 030101 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.030101
34.
34. R. Lambiotte and S. Redner, Europhys. Lett. 82, 18007 (2008).
http://dx.doi.org/10.1209/0295-5075/82/18007
35.
35. F. Schweitzer and L. Behera, Eur. Phys. J. B 67, 301 (2009).
http://dx.doi.org/10.1140/epjb/e2009-00001-3
36.
36. N. Crokidakis and C. Anteneodo, Phys. Rev. E 86, 061127 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.061127
37.
37.Cybozu Labs, Language Detection Library for Java, see http://www.slideshare.net/shuyo/language-detection-library-for-java.
38.
38. W. Peng and D. H. Park, in Proceedings of the International AAAI Conference on Weblogs and Social Media (2011), p. 273.
39.
39. L. Nguyen, P. Wu, W. Chan, W. Peng, and J. Zhang, in Proceedings of the Workshop on Issues of Sentiment Discovery and Opinion Mining at 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2012), No. 6.
40.
40. B. O'Connor, R. Balasubramanyan, B. R. Routledge, and N. A. Smith, in Proceedings of the International AAAI Conference on Weblogs and Social Media (2010), p. 122.
http://aip.metastore.ingenta.com/content/aip/journal/chaos/24/1/10.1063/1.4866011
Loading
/content/aip/journal/chaos/24/1/10.1063/1.4866011
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/24/1/10.1063/1.4866011
2014-03-11
2014-10-02

Abstract

Opinion exchange models aim to describe the process of public opinion formation, seeking to uncover the intrinsic mechanism in social systems; however, the model results are seldom empirically justified using large-scale actual data. Online social media provide an abundance of data on opinion interaction, but the question of whether opinion models are suitable for characterizing opinion formation on social media still requires exploration. We collect a large amount of user interaction information from an actual social network, i.e., Twitter, and analyze the dynamic sentiments of users about different topics to investigate realistic opinion evolution. We find two nontrivial results from these data. First, public opinion often evolves to an ordered state in which one opinion predominates, but not to complete consensus. Second, agents are reluctant to change their opinions, and the distribution of the number of individual opinion changes follows a power law. Then, we suggest a model in which agents take external actions to express their internal opinions according to their activity. Conversely, individual actions can influence the activity and opinions of neighbors. The probability that an agent changes its opinion depends nonlinearly on the fraction of opponents who have taken an action. Simulation results show user action patterns and the evolution of public opinion in the model coincide with the empirical data. For different nonlinear parameters, the system may approach different regimes. A large decay in individual activity slows down the dynamics, but causes more ordering in the system.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/24/1/1.4866011.html;jsessionid=1dlt0pdcpv48m.x-aip-live-03?itemId=/content/aip/journal/chaos/24/1/10.1063/1.4866011&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Opinion formation on social media: An empirical approach
http://aip.metastore.ingenta.com/content/aip/journal/chaos/24/1/10.1063/1.4866011
10.1063/1.4866011
SEARCH_EXPAND_ITEM