1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/24/2/10.1063/1.4868393
1.
1. J. B. S. Haldane, On Being the Right Size and Other Essays, edited by J. M. Smith (Oxford University Press, 1985).
2.
2. G. B. West, J. H. Brown, and B. J. Enquist, “ A general model for the origin of allometric scaling laws in biology,” Science 276(5309 ), 122126 (1997).
http://dx.doi.org/10.1126/science.276.5309.122
3.
3. O. SnellDie abhängigkeit des hirngewichts von dem körpergewicht und den geistigen fähigkeiten,” Arch. Psychiatr. Nervenkrankh. 23(2 ), 436446 (1892).
http://dx.doi.org/10.1007/BF01843462
4.
4. D. W. Thompson, On Growth and Form, edited by Canto (Cambridge University Press, Cambridge, 1992).
5.
5. J. S. Huxley, Problems of Relative Growth, 2nd ed., (Dover, New York, 1972).
6.
6. B. A. Carreras, D. E. Newman, I. Dobson, and A. B. Poole, “ Evidence for self-organized criticality in a time series of electric power system blackouts,” IEEE Trans. Circuits Syst. Part I 51(9 ), 17331740 (2004).
http://dx.doi.org/10.1109/TCSI.2004.834513
7.
7. B. A. Carreras, V. E. Lynch, I. Dobson, and D. E. Newman, “ Complex dynamics of blackouts in power transmission systems,” Chaos 14(3 ), 643 (2004).
http://dx.doi.org/10.1063/1.1781391
8.
8. I. Dobson, B. A. Carreras, V. E. Lynch, and D. E. Newman, “ Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization,” Chaos 17(2 ), 026103 (2007).
http://dx.doi.org/10.1063/1.2737822
9.
9. B. A. Carreras, D. E. Newman, M. Zeidenberg, and I. Dobson, “ Dynamics of an economics model for generation coupled to the OPA power transmission model,” in 43rd Hawaii International Conference on System Sciences, Hawaii, IEEE, January 2010.
10.
10. B. A. Carreras, D. E. Newman, I. Dobson, and M. Zeidenberg, “ The impact of risk-averse operation on the likelihood of extreme events in a simple model of infrastructure,” Chaos 19(4 ), 43107 (2009).
http://dx.doi.org/10.1063/1.3234238
11.
11. B. A. Carreras, D. E. Newman, I. Dobson, and N. S. Degala, “ Validating OPA with WECC data,” in 46th Hawaii International Conference on System Sciences, IEEE, January 2013.
12.
12. Z. Wang, R. J. Thomas, and A. Scaglione, “ Generating random topology power grids,” in Proceedings of the 41st Hawaii International Conference on System Sciences, IEEE, January 2008.
13.
13. Z. Wang, A. Scaglione, and R. J. Thomas, “ Generating statistically correct random topologies for testing smart grid communication and control networks,” IEEE Trans. Smart Grid 1(1 ), 2839 (2010).
http://dx.doi.org/10.1109/TSG.2010.2044814
14.
14.See http://www.nerc.com/»dawg/database.html for “ Information on Blackouts in North America,” Disturbance Analysis Working Group (DAWG) Database, North American Electric Reliability Council (NERC), Princeton, New Jersey USA 08540-5731.
15.
15.See http://www.energy.ca.gov/electricity/historic_peak_demand.html for information on the peak energy demand and generation margin in California.
16.
16.See http://www.eia.doe.gov/cneaf/electricity/epa/epat3p2.html for information on peak energy demand.
17.
17. D. E. Newman, B. A. Carreras, V. E. Lynch, and I. Dobson, “ Exploring complex systems aspects of blackout risk and mitigation,” IEEE Trans. Reliab. 60, 134 (2011).
http://dx.doi.org/10.1109/TR.2011.2104711
18.
18. S. Mei, X. Zhang, and M. Cao, Power Grid Complexity, (Tsinghua University Press, Beijing and Springer, Berlin, 2011).
19.
19. S. Mei, S. Wu, X. Zhang, G. Wang, and D. Xia, “ Power system model with transient constraints and its criticality,” Eur. Trans. Electr. Power 21, 5969 (2011).
http://dx.doi.org/10.1002/etep.412
20.
20. S. Mei, Y. Ni, G. Wang, and S. Wu, “ A study of self-organized criticality of power system under cascading failures based on AC-OPF with voltage stability margin,” IEEE Trans. Power Syst. 23(4 ), 17191726 (2008).
http://dx.doi.org/10.1109/TPWRS.2008.2002295
21.
21. J. Qi, S. Mei, and F. Liu, “ Blackout model considering slow process,” IEEE Trans. Power Syst. 28(3 ), 32743282 (2013).
http://dx.doi.org/10.1109/TPWRS.2012.2230196
22.
22. S. Mei, F. He, X. Zhang, S. Wu, and G. Wang, “ An improved OPA model and blackout risk assessment,” IEEE Trans. Power Syst. 24(2 ), 814823 (2009).
http://dx.doi.org/10.1109/TPWRS.2009.2016521
23.
23. R. Fitzmaurice, A. Keane, and M. O'Malley, “ Effect of short-term risk-aversive dispatch on a complex system model for power systems,” IEEE Trans. Power Syst. 26(1 ), 460469 (2011).
http://dx.doi.org/10.1109/TPWRS.2010.2050079
24.
24.IEEE PES CAMS Task Force on Cascading Failure, “ Initial review of methods for cascading failure analysis in electric power transmission systems,” IEEE Power and Energy Society General Meeting, Pittsburgh, PA, USA, July 2008.
25.
25. R. Billinton, J. Otengadjei, and R. Ghajar, “ Comparison of two alternate methods to establish an interrupted energy assessment rate,” IEEE Trans. Power Syst. 2(3 ), 751757 (1987).
http://dx.doi.org/10.1109/TPWRS.1987.4335205
26.
26. D. E. Newman, B. A. Carreras, M. Kirchner, and I. Dobson, “ The impact of distributed generation on power transmission grid dynamics,” in 44th Hawaii International Conference on System Sciences, Hawaii, IEEE, January 2011.
27.
27. I. Dobson, K. R. Wierzbicki, B. A. Carreras, V. E. Lynch, and D. E. Newman, “ An estimator of propagation of cascading failure,” 39th Hawaii International Conference on System Sciences, Hawaii, IEEE, January 2006.
28.
28. D. E. Newman, B. Nkei, B. A. Carreras, I. Dobson, V. E. Lynch, and P. Gradney, “ Risk assessment in complex interacting infrastructure systems,” 38th Hawaii International Conference on System Sciences, Hawaii, January 2005.
29.
29. B. A. Carreras, D. E. Newman, P. Gradney, V. E. Lynch, and I. Dobson, “ Interdependent risk in interacting infrastructure systems,” 40th Hawaii International Conference on System Sciences, Hawaii, Hawaii, Jan 2007.
30.
30. B. A. Carreras, D. E. Newman, I. Dobson, V. E. Lynch, and P. Gradney, “ Thresholds and complex dynamics of interdependent cascading infrastructure systems,” in Networks of Networks: The Last Frontier of Complexity, edited by G. D'Agostino and A. Scala (Springer International Publishing, 2014), pp. 95114.
http://aip.metastore.ingenta.com/content/aip/journal/chaos/24/2/10.1063/1.4868393
Loading
/content/aip/journal/chaos/24/2/10.1063/1.4868393
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/24/2/10.1063/1.4868393
2014-04-08
2015-07-07

Abstract

Failures of the complex infrastructures society depends on having enormous human and economic cost that poses the question: Are there ways to optimize these systems to reduce the risks of failure? A dynamic model of one such system, the power transmission grid, is used to investigate the risk from failure as a function of the system size. It is found that there appears to be optimal sizes for such networks where the risk of failure is balanced by the benefit given by the size.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/24/2/1.4868393.html;jsessionid=a7fddb4qk27nl.x-aip-live-03?itemId=/content/aip/journal/chaos/24/2/10.1063/1.4868393&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Does size matter?
http://aip.metastore.ingenta.com/content/aip/journal/chaos/24/2/10.1063/1.4868393
10.1063/1.4868393
SEARCH_EXPAND_ITEM