1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
A test for a conjecture on the nature of attractors for smooth dynamical systems
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/24/2/10.1063/1.4868984
1.
1. Afraĭmovič, V. S. , Bykov, V. V. , and Silnikov, L. P. , “ The origin and structure of the Lorenz attractor,” Dokl. Akad. Nauk SSSR 234, 336339 (1977).
2.
2. Alves, J. F. , Freitas, J. M. , Luzzatto, S. , and Vaienti, S. , “ From rates of mixing to recurrence times via large deviations,” Adv. Math. 228, 12031236 (2011).
http://dx.doi.org/10.1016/j.aim.2011.06.014
3.
3. Alves, J. F. , Luzzatto, S. , and Pinheiro, V. , “ Lyapunov exponents and rates of mixing for one-dimensional maps,” Ergodic Theory Dynam. Syst. 24, 637657 (2004).
http://dx.doi.org/10.1017/S0143385703000579
4.
4. Benedicks, M. and Carleson, L. , “ On iterations of 1 − ax2 on (−1, 1),” Ann. Math. 122, 125 (1985).
http://dx.doi.org/10.2307/1971367
5.
5. Benedicks, M. and Carleson, L. , “ The dynamics of the Hénon map,” Ann. Math. 133, 73169 (1991).
http://dx.doi.org/10.2307/2944326
6.
6. Benedicks, M. and Young, L.-S. , “ Markov extensions and decay of correlations for certain Hénon maps,” Astérisque 261, 1356 (2000).
7.
7. Bowen, R. , Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Vol. 470 Lecture Notes in Math. (Springer, Berlin, 1975).
8.
8. Collet, P. and Eckmann, J.-P. , “ Positive Liapunov exponents and absolute continuity for maps of the interval,” Ergodic Theory Dynam. Syst. 3, 1346 (1983).
http://dx.doi.org/10.1017/S0143385700001802
9.
9. Denker, M. and Philipp, W. , “ Approximation by Brownian motion for Gibbs measures and flows under a function,” Ergodic Theory Dynam. Syst. 4, 541552 (1984).
http://dx.doi.org/10.1017/S0143385700002637
10.
10. Dolgopyat, D. , “ On the decay of correlations in Anosov flows,” Ann. Math. 147, 357390 (1998).
http://dx.doi.org/10.2307/121012
11.
11. Dolgopyat, D. , “ Prevalence of rapid mixing in hyperbolic flows,” Ergodic Theory Dynam. Syst. 18, 10971114 (1998).
http://dx.doi.org/10.1017/S0143385798117431
12.
12. Field, M. J. , Melbourne, I. , and Török, A. , “ Stability of mixing and rapid mixing for hyperbolic flows,” Ann. Math. 166, 269291 (2007).
http://dx.doi.org/10.4007/annals.2007.166.269
13.
13. Gallavotti, G. and Cohen, E. G. D. , “ Dynamical ensembles in stationary states,” J. Stat. Phys. 80, 931970 (1995).
http://dx.doi.org/10.1007/BF02179860
14.
14. Gollub, J. P. and Swinney, H. L. , “ Onset of turbulence in a rotating fluid,” Phys. Rev. Lett. 35, 927930 (1975).
http://dx.doi.org/10.1103/PhysRevLett.35.927
15.
15. Gottwald, G. A. and Melbourne, I. , “ A new test for chaos in deterministic systems,” Proc. R. Soc. London, Ser. A 460, 603611 (2004).
http://dx.doi.org/10.1098/rspa.2003.1183
16.
16. Gottwald, G. A. and Melbourne, I. , “ Testing for chaos in deterministic systems with noise,” Physica D 212, 100110 (2005).
http://dx.doi.org/10.1016/j.physd.2005.09.011
17.
17. Gottwald, G. A. and Melbourne, I. , “ On the implementation of the 0-1 test for chaos,” SIAM J. Appl. Dyn. Syst. 8, 129145 (2009).
http://dx.doi.org/10.1137/080718851
18.
18. Gottwald, G. A. and Melbourne, I. , “ On the validity of the 0-1 test for chaos,” Nonlinearity 22, 13671382 (2009).
19.
19. Gouëzel, S. , “ Berry-Esseen theorem and local limit theorem for non uniformly expanding maps,” Ann. Inst. H. Poincaré Probab. Stat. 41, 9971024 (2005).
http://dx.doi.org/10.1016/j.anihpb.2004.09.002
20.
20. Gouëzel, S. , “ Almost sure invariance principle for dynamical systems by spectral methods,” Ann. Probab. 38, 16391671 (2010).
http://dx.doi.org/10.1214/10-AOP525
21.
21. Guckenheimer, J. and Williams, R. F. , “ Structural stability of Lorenz attractors,” Inst. Hautes Études Sci. Publ. Math. 50, 5972 (1979).
http://dx.doi.org/10.1007/BF02684769
22.
22. Hénon, M. , “ A two-dimensional mapping with a strange attractor,” Commun. Math. Phys. 50, 6977 (1976).
http://dx.doi.org/10.1007/BF01608556
23.
23. Jakobson, M. V. , “ Absolutely continuous invariant measures for one-parameter families of one-dimensional maps,” Commun. Math. Phys. 81, 3988 (1981).
http://dx.doi.org/10.1007/BF01941800
24.
24. Liverani, C. , “ On contact Anosov flows,” Ann. Math. 159, 12751312 (2004).
http://dx.doi.org/10.4007/annals.2004.159.1275
25.
25. Lorenz, E. , “ Predictability—A problem solved,” in Predictability, edited by T. Palmer (European Centre for Medium-Range Weather Forecast, Shinfield Park, Reading, 1996).
26.
26. Lorenz, E. D. , “ Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130141 (1963).
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
27.
27. Lorenz, E. N. and Emanuel, K. A. , “ Optimal sites for supplementary weather observations: Simulation with a small model,” J. Atmos. Sci. 55, 399414 (1998).
http://dx.doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2
28.
28. Lyubich, M. , “ Almost every real quadratic map is either regular or stochastic,” Ann. Math. 156, 178 (2002).
http://dx.doi.org/10.2307/3597183
29.
29. Melbourne, I. and Gottwald, G. A. , “ Power spectra for deterministic chaotic dynamical systems,” Nonlinearity 21, 179189 (2008).
http://dx.doi.org/10.1088/0951-7715/21/1/010
30.
30. Melbourne, I. and Nicol, M. , “ Almost sure invariance principle for nonuniformly hyperbolic systems,” Commun. Math. Phys. 260, 131146 (2005).
http://dx.doi.org/10.1007/s00220-005-1407-5
31.
31. Melbourne, I. and Nicol, M. , “ Large deviations for nonuniformly hyperbolic systems,” Trans. Am. Math. Soc. 360, 66616676 (2008).
http://dx.doi.org/10.1090/S0002-9947-08-04520-0
32.
32. Melbourne, I. and Nicol, M. , “ A vector-valued almost sure invariance principle for hyperbolic dynamical systems,” Ann. Prob. 37, 478505 (2009).
http://dx.doi.org/10.1214/08-AOP410
33.
33. Mora, L. and Viana, M. , “ Abundance of strange attractors,” Acta Math. 171, 171 (1993).
http://dx.doi.org/10.1007/BF02392766
34.
34. Palis, J. , “ A global view of dynamics and a conjecture on the denseness of finitude of attractors,” Astérisque 261, 335347 (2000).
35.
35. Palis, J. , “ A global perspective for non-conservative dynamics,” Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 485507 (2005).
http://dx.doi.org/10.1016/j.anihpc.2005.01.001
36.
36. Palis, J. , “ Open questions leading to a global perspective in dynamics,” Nonlinearity 21, T37T43 (2008).
http://dx.doi.org/10.1088/0951-7715/21/4/T01
37.
37. Ratner, M. , “ The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature,” Israel J. Math. 16, 181197 (1973).
http://dx.doi.org/10.1007/BF02757869
38.
38. Rey-Bellet, L. and Young, L.-S. , “ Large deviations in non-uniformly hyperbolic dynamical systems,” Ergodic Theory Dynam. Syst. 28, 587612 (2008).
http://dx.doi.org/10.1017/S0143385707000478
39.
39. Ruelle, D. , Thermodynamic Formalism, Vol. 5 Encyclopedia of Math. and its Applications (Addison Wesley, Massachusetts, 1978).
40.
40. Sinaĭ, Y. G. , “ Gibbs measures in ergodic theory,” Russ. Math. Surv. 27, 2170 (1972).
http://dx.doi.org/10.1070/RM1972v027n04ABEH001383
41.
41. Smale, S. , “ Differentiable dynamical systems,” Bull. Am. Math. Soc. 73, 747817 (1967).
http://dx.doi.org/10.1090/S0002-9904-1967-11798-1
42.
42. Tucker, W. , “ A rigorous ODE solver and Smale's 14th problem,” Found. Comput. Math. 2, 53117 (2002).
http://dx.doi.org/10.1007/s002080010018
43.
43. Williams, R. F. , “ The structure of Lorenz attractors,” Inst. Hautes Études Sci. Publ. Math. 50, 7399 (1979).
http://dx.doi.org/10.1007/BF02684770
44.
44. Young, L.-S. , “ Statistical properties of dynamical systems with some hyperbolicity,” Ann. Math. 147, 585650 (1998).
http://dx.doi.org/10.2307/120960
45.
45. Young, L.-S. , “ Recurrence times and rates of mixing,” Israel J. Math. 110, 153188 (1999).
http://dx.doi.org/10.1007/BF02808180
http://aip.metastore.ingenta.com/content/aip/journal/chaos/24/2/10.1063/1.4868984
Loading
/content/aip/journal/chaos/24/2/10.1063/1.4868984
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/24/2/10.1063/1.4868984
2014-03-19
2014-08-02

Abstract

Dynamics arising persistently in smooth dynamical systems ranges from regular dynamics (periodic, quasiperiodic) to strongly chaotic dynamics (Anosov, uniformly hyperbolic, nonuniformly hyperbolic modelled by Young towers). The latter include many classical examples such as Lorenz and Hénon-like attractors and enjoy strong statistical properties. It is natural to conjecture (or at least hope) that most dynamical systems fall into these two extreme situations. We describe a numerical test for such a conjecture/hope and apply this to the logistic map where the conjecture holds by a theorem of Lyubich, and to the 40-dimensional Lorenz-96 system where there is no rigorous theory. The numerical outcome is almost identical for both (except for the amount of data required) and provides evidence for the validity of the conjecture.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/24/2/1.4868984.html;jsessionid=80x1orxqgch1.x-aip-live-06?itemId=/content/aip/journal/chaos/24/2/10.1063/1.4868984&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A test for a conjecture on the nature of attractors for smooth dynamical systems
http://aip.metastore.ingenta.com/content/aip/journal/chaos/24/2/10.1063/1.4868984
10.1063/1.4868984
SEARCH_EXPAND_ITEM