1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/24/2/10.1063/1.4870402
1.
1. R. Albert and A. Barabási, Rev. Mod. Phys. 74, 47 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.47
2.
2. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang, Phys. Rep. 424, 175 (2006).
http://dx.doi.org/10.1016/j.physrep.2005.10.009
3.
3. S. L. Lauritzen, Graphical Models (Oxford University Press, Oxford, 1996), Vol. 17.
4.
4. A. Tsonis and P. Roebber, Physica A 333, 497 (2004).
http://dx.doi.org/10.1016/j.physa.2003.10.045
5.
5. A. Tsonis, K. Swanson, and P. Roebber, B. Am. Meteorol. Soc. 87, 585 (2006).
http://dx.doi.org/10.1175/BAMS-87-5-585
6.
6. A. Tsonis, K. Swanson, and G. Wang, J. Climate 21, 2990 (2008).
http://dx.doi.org/10.1175/2007JCLI1907.1
7.
7. A. Tsonis and K. Swanson, Phys. Rev. Lett. 100, 228502 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.228502
8.
8. K. Yamasaki, A. Gozolchiani, and S. Havlin, Phys. Rev. Lett. 100, 228501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.228501
9.
9. A. Gozolchiani, K. Yamasaki, O. Gazit, and S. Havlin, Europhys. Lett. 83, 28005 (2008).
http://dx.doi.org/10.1209/0295-5075/83/28005
10.
10. J. Donges, Y. Zou, N. Marwan, and J. Kurths, Eur. Phys. J. Spec. Top. 174, 157 (2009).
http://dx.doi.org/10.1140/epjst/e2009-01098-2
11.
11. J. Donges, Y. Zou, N. Marwan, and J. Kurths, Europhys. Lett. 87, 48007 (2009).
http://dx.doi.org/10.1209/0295-5075/87/48007
12.
12. W. Ge-Li and A. A. Tsonis, Chin. Phys. B 18, 5091 (2009).
http://dx.doi.org/10.1088/1674-1056/18/11/080
13.
13. K. Yamasaki, A. Gozolchiani, and S. Havlin, Prog. Theor. Phys. Supp. 179, 178 (2009).
http://dx.doi.org/10.1143/PTPS.179.178
14.
14. M. Barreiro, A. Marti, and C. Masoller, Chaos 21, 013101 (2011).
http://dx.doi.org/10.1063/1.3545273
15.
15. A. Gozolchiani, S. Havlin, and K. Yamasaki, Phys. Rev. Lett. 107, 148501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.148501
16.
16. J. F. Donges, H. C. Schultz, N. Marwan, Y. Zou, and J. Kurths, Eur. Phys. J. B 84, 635 (2011).
http://dx.doi.org/10.1140/epjb/e2011-10795-8
17.
17. K. Steinhaeuser, N. Chawla, and A. Ganguly, Stat. Anal. Data Min. 4, 497 (2011).
http://dx.doi.org/10.1002/sam.10100
18.
18. K. Steinhaeuser, A. R. Ganguly, and N. V. Chawla, Clim. Dynam. 39, 889 (2012).
http://dx.doi.org/10.1007/s00382-011-1135-9
19.
19. M. Paluš, D. Hartman, J. Hlinka, and M. Vejmelka, Nonlinear Proc. Geophys. 18, 751 (2011).
http://dx.doi.org/10.5194/npg-18-751-2011
20.
20. I. Ebert-Uphoff and Y. Deng, J. Climate 25, 5648 (2012).
http://dx.doi.org/10.1175/JCLI-D-11-00387.1
21.
21. I. Ebert-Uphoff and Y. Deng, Geophy. Res. Lett. 39, L19701, doi:10.1029/2012GL053269 (2012).
http://dx.doi.org/10.1029/2012GL053269
22.
22. J. Runge, J. Heitzig, N. Marwan, and J. Kurths, Phys. Rev. E 86, 061121 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.061121
23.
23. J. Runge, J. Heitzig, V. Petoukhov, and J. Kurths, Phys. Rev. Lett. 108, 258701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.258701
24.
24. J. Runge, V. Petoukhov, and J. Kurths, J. Climate 27, 720 (2014).
http://dx.doi.org/10.1175/JCLI-D-13-00159.1
25.
25. R. Dahlhaus, M. Eichler, and J. Sandkühler, J. Neurosci. Methods 77, 93 (1997).
http://dx.doi.org/10.1016/S0165-0270(97)00100-3
26.
26. K. A. Schindler, S. Bialonski, M. T. Horstmann, C. E. Elger, and K. Lehnertz, Chaos 18, 033119 (2008).
http://dx.doi.org/10.1063/1.2966112
27.
27. E. Bullmore and O. Sporns, Nat. Rev. Neurosci. 10, 186 (2009).
http://dx.doi.org/10.1038/nrn2575
28.
28. M. Jalili and M. G. Knyazeva, J. Integr. Neurosci. 10, 213 (2011).
http://dx.doi.org/10.1142/S0219635211002725
29.
29. A. Tong, G. Lesage, G. Bader, H. Ding, H. Xu, X. Xin, J. Young, G. Berriz, R. Brost, M. Chang et al., Science 303, 808 (2004).
http://dx.doi.org/10.1126/science.1091317
30.
30. M. Bansal, V. Belcastro, A. Ambesi-Impiombato, and D. Di Bernardo, Mol. Syst. Biol. 3, 78 (2007).
http://dx.doi.org/10.1038/msb4100120
31.
31. N. Friedman, M. Linial, I. Nachman, and D. Pe'er, J. Comput. Biol. 7, 601 (2000).
http://dx.doi.org/10.1089/106652700750050961
32.
32. S. Mukherjee and S. Hill, Bioinformatics 27, 994 (2011).
http://dx.doi.org/10.1093/bioinformatics/btr070
33.
33. S. Havlin, D. Kenett, E. Ben-Jacob, A. Bunde, R. Cohen, H. Hermann, J. Kantelhardt, J. Kertész, S. Kirkpatrick, J. Kurths, J. Portugali, and S. Solomon, Eur. Phys. J. Spec. Top. 214, 273 (2012).
http://dx.doi.org/10.1140/epjst/e2012-01695-x
34.
34. E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen et al., B. Am. Meteorol. Soc. 77, 437 (1996).
http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
35.
35. D. Majewski, D. Liermann, P. Prohl, B. Ritter, M. Buchhold, T. Hanisch, G. Paul, W. Wergen, and J. Baumgardner, Mon. Weather Rev. 130, 319 (2002).
http://dx.doi.org/10.1175/1520-0493(2002)130<0319:TOGIHG>2.0.CO;2
36.
36. T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, Math. Intell. 27, 83 (2005).
http://dx.doi.org/10.1007/BF02985802
37.
37. M. Wainwright and M. Jordan, Mach. Learn. 1, 1 (2008).
http://dx.doi.org/10.1561/2200000001
38.
38. H. Kishino and P. Waddell, Genome Inform. Ser. 11, 83 (2000).
39.
39. A. de la Fuente, N. Bing, I. Hoeschele, and P. Mendes, Bioinfromatics 20, 3565 (2004).
http://dx.doi.org/10.1093/bioinformatics/bth445
40.
40. A. Wille, P. Zimmermann, E. Vranová, A. Fürholz, O. Laule, S. Bleuler, L. Hennig, A. Prelic, P. Von Rohr, L. Thiele et al., Genome Biol. 5, R92 (2004).
http://dx.doi.org/10.1186/gb-2004-5-11-r92
41.
41. A. Dobra, C. Hans, B. Jones, J. Nevins, G. Yao, and M. West, J. Multivariate Anal. 90, 196 (2004).
http://dx.doi.org/10.1016/j.jmva.2004.02.009
42.
42. J. Schäfer and K. Strimmer, Stat. Appl. Genet. Mol. Biol. 4, 32 (2005).
http://dx.doi.org/10.2202/1544-6115.1175
43.
43. N. Krämer, J. Schäfer, and A. Boulesteix, BMC Bioinform. 10, 384 (2009).
http://dx.doi.org/10.1186/1471-2105-10-384
44.
44. P. Menéndez, Y. Kourmpetis, C. Ter Braak, and F. van Eeuwijk, PLoS One 5, e14147 (2010).
http://dx.doi.org/10.1371/journal.pone.0014147
45.
45. J. Besag, J. Roy. Stat. Soc. B Met. 36, 192 (1974).
46.
46. B. Shipley, Cause and Correlation in Biology: A User's Guide to Path Analysis, Structural Equations and Causal Inference (Cambridge University Press, Cambridge, 2002).
47.
47. N. Meinshausen and P. Bühlmann, Ann. Stat. 34, 1436 (2006).
http://dx.doi.org/10.1214/009053606000000281
48.
48. J. Friedman, T. Hastie, and R. Tibshirani, Biostatistics 9, 432 (2008).
http://dx.doi.org/10.1093/biostatistics/kxm045
49.
49. O. Banerjee, L. El Ghaoui, and A. d'Aspremont, J. Mach. Learn. Res. 9, 485 (2008).
50.
50. X. Wu, Y. Ye, and K. R. Subramanian, in ACM SIGKDD Workshop on Data Mining in Bioinformatics (ACM, New York, 2003), Vol. 3, p. 63.
51.
51. J. Pedlosky, Geophysical Fluid Dynamics (Springer, New York, 1982), Vol. 1.
52.
52. B. Hoskins, A. Simmons, and D. Andrews, Q. J. Roy. Meteor. Soc. 103, 553 (1977).
http://dx.doi.org/10.1002/qj.49710343802
53.
53. M. Longuet-Higgins, Proc. R. Soc. London, Ser. A 279, 446 (1964).
http://dx.doi.org/10.1098/rspa.1964.0116
54.
54. G. J. Haltiner and R. T. Williams, Numerical Prediction and Dynamic Meteorology (Wiley, New York, 1980), Vol. 2.
55.
55. E. Kalnay, Atmospheric Modeling, Data Assimilation, and Predictability (Cambridge University Press, Cambridge, 2003).
56.
56. D. Watts and S. Strogatz, Nature 393, 440 (1998).
http://dx.doi.org/10.1038/30918
57.
57. A. E. Gill, Atmosphere-Ocean Dynamics (Academic Press, San Diego, California, 1982), Vol. 30.
58.
58. C. Frankignoul and K. Hasselmann, Tellus 29, 289 (1977).
http://dx.doi.org/10.1111/j.2153-3490.1977.tb00740.x
59.
59. O. Sporns and J. D. Zwi, Neuroinformatics 2, 145 (2004).
http://dx.doi.org/10.1385/NI:2:2:145
60.
60. S. Bialonski, M. Horstmann, and K. Lehnertz, Chaos 20, 013134 (2010).
http://dx.doi.org/10.1063/1.3360561
61.
61. J. Hlinka, D. Hartman, and M. Paluš, Chaos 22, 033107 (2012).
http://dx.doi.org/10.1063/1.4732541
62.
62. M. Paluš, Phys. Rev. Lett. 101, 134101 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.134101
63.
63. J. M. Wallace and D. S. Gutzler, Mon. Weather Rev. 109, 784 (1981).
http://dx.doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
64.
64. J. Hlinka, D. Hartman, M. Vejmelka, J. Runge, N. Marawan, J. Kurths, and M. Paluš, Entropy 15, 2023 (2013).
http://dx.doi.org/10.3390/e15062023
65.
65. H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1984).
66.
66. M. Yuan and Y. Lin, Biometrika 94, 19 (2007).
http://dx.doi.org/10.1093/biomet/asm018
67.
67. J. Fan, Y. Feng, and Y. Wu, Ann. Appl. Stat. 3, 521 (2009).
http://dx.doi.org/10.1214/08-AOAS215
68.
68. J. Peng, P. Wang, N. Zhou, and J. Zhu, J. Am. Stat. Assoc. 104, 735 (2009).
http://dx.doi.org/10.1198/jasa.2009.0126
69.
69. B. Schelter, M. Winterhalder, R. Dahlhaus, J. Kurths, and J. Timmer, Phys. Rev. Lett. 96, 208103 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.208103
70.
70. K. Hlaváčková-Schindler, M. Paluš, M. Vejmelka, and J. Bhattacharya, Phys. Rep. 441, 1 (2007).
http://dx.doi.org/10.1016/j.physrep.2006.12.004
71.
71. S. Frenzel and B. Pompe, Phys. Rev. Lett. 99, 204101 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.204101
72.
72. V. A. Vakorin, O. A. Krakovska, and A. R. McIntosh, J. Neurosci. Methods 184, 152 (2009).
http://dx.doi.org/10.1016/j.jneumeth.2009.07.014
73.
73. J. Nawrath, M. C. Romano, M. Thiel, I. Z. Kiss, M. Wickramasinghe, J. Timmer, J. Kurths, and B. Schelter, Phys. Rev. Lett. 104, 038701 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.038701
http://aip.metastore.ingenta.com/content/aip/journal/chaos/24/2/10.1063/1.4870402
Loading
/content/aip/journal/chaos/24/2/10.1063/1.4870402
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/24/2/10.1063/1.4870402
2014-04-04
2015-08-28

Abstract

Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/24/2/1.4870402.html;jsessionid=1teft5c6fk20r.x-aip-live-03?itemId=/content/aip/journal/chaos/24/2/10.1063/1.4870402&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A Gaussian graphical model approach to climate networks
http://aip.metastore.ingenta.com/content/aip/journal/chaos/24/2/10.1063/1.4870402
10.1063/1.4870402
SEARCH_EXPAND_ITEM