1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Complex statistics and diffusion in nonlinear disordered particle chains
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/24/2/10.1063/1.4871477
1.
1. V. I. Arnold and A. Avez, Problèmes Ergodiques de la Mécanique Classique (Gauthier-Villars, Paris, 1967/Benjamin, New York, 1968).
2.
2. Y. G. Sinai, Usp. Mat. Nauk 27(4), 21 (1972).
3.
3. J. P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57(3), 617 (1985).
http://dx.doi.org/10.1103/RevModPhys.57.617
4.
4. J. Rice, Mathematical Statistics and Data Analysis, 2nd ed. (Duxbury Press, 1995).
5.
5. Y. Aizawa, Prog. Theor. Phys. 71, 1419 (1984).
http://dx.doi.org/10.1143/PTP.71.1419
6.
6. B. V. Chirikov and D. L. Shepelyansky, Physica D 13, 395 (1984).
http://dx.doi.org/10.1016/0167-2789(84)90140-4
7.
7. J. D. Meiss and E. Ott, Physica D 20, 387 (1986).
http://dx.doi.org/10.1016/0167-2789(86)90041-2
8.
8. C. Skokos, T. Bountis, and C. Antonopoulos, Eur. Phys. J.: Spec. Top. 165, 5 (2008).
9.
9. S. Flach, D. O. Krimer, and C. Skokos, Phys. Rev. Lett. 102, 024101 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.024101
10.
10. M. Johansson, G. Kopidakis, S. Lepri, and S. Aubry, Europhys. Lett. 86(1), 10009 (2009).
http://dx.doi.org/10.1209/0295-5075/86/10009
11.
11. C. Skokos, D. O. Krimer, S. Komineas, and S. Flach, Phys. Rev. E 79, 056211 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.056211
12.
12. C. Tsallis, Introduction to Nonextensive Statistical Mechanics—Approaching a Complex World (Springer, New York, 2009).
13.
13. J. D. Bodyfelt, T. V. Laptyeva, C. Skokos, D. O. Krimer, and S. Flach, Phys. Rev. E 84, 016205 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.016205
14.
14. T. V. Laptyeva, J. D. Bodyfelt, D. O. Krimer, C. Skokos, and S. Flach, Europhys. Lett. 91, 30001 (2010).
http://dx.doi.org/10.1209/0295-5075/91/30001
15.
15. M. Johansson, G. Kopidakis, and S. Aubry, Europhys. Lett. 91, 50001 (2010).
http://dx.doi.org/10.1209/0295-5075/91/50001
16.
16. S. Aubry, Int. J. Bif. Chaos 21, 2125 (2011).
http://dx.doi.org/10.1142/S0218127411029677
17.
17. S. Umarov, C. Tsallis, and S. Steinberg, Milan J. Math. 76, 307 (2008).
http://dx.doi.org/10.1007/s00032-008-0087-y
18.
18. P. W. Anderson, Phys. Rev. 109, 1492 (1958).
http://dx.doi.org/10.1103/PhysRev.109.1492
19.
19. A. Pikovsky and D. Shepelyansky, Phys. Rev. Lett. 100, 094101 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.094101
20.
20. G. Kopidakis, S. Komineas, S. Flach, and S. Aubry, Phys. Rev. Lett. 100, 084103 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.084103
21.
21. H. Veksler, Y. Krivolapov, and S. Fishman, Phys. Rev. E 80, 037201 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.037201
22.
22. C. Skokos and S. Flach, Phys. Rev. E 82, 016208 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.016208
23.
23. S. Flach, Chem. Phys. 375, 548 (2010).
http://dx.doi.org/10.1016/j.chemphys.2010.02.022
24.
24. H. Veksler, Y. Krivolapov, and S. Fishman, Phys. Rev. E 81, 017201 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.017201
25.
25. M. Mulansky and A. Pikovsky, Europhys. Lett. 90, 10015 (2010).
http://dx.doi.org/10.1209/0295-5075/90/10015
26.
26. M. Mulansky, K. Ahnert, and A. Pikovsky, Phys. Rev. E 83, 026205 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.026205
27.
27. J. D. Bodyfelt, T. V. Laptyeva, G. Gligoric, D. O. Krimer, C. Skokos, and S. Flach, Int. J. Bif. Chaos 21, 2107 (2011).
http://dx.doi.org/10.1142/S0218127411029665
28.
28. T. Bountis and H. Skokos, Complex Hamiltonian Dynamics (Springer-Verlag, Berlin, 2012).
29.
29. C. Skokos, I. Gkolias, and S. Flach, Phys. Rev. Lett. 111, 064101 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.064101
30.
30. A. Pikovsky and S. Fishman, Phys. Rev. E 83, 025201 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.025201
31.
31. M. Mulansky and A. Pikovsky, New J. Phys. 15, 053015 (2013).
http://dx.doi.org/10.1088/1367-2630/15/5/053015
32.
32. H. Yoshida, Phys. Lett. A 150, 262 (1990).
http://dx.doi.org/10.1016/0375-9601(90)90092-3
33.
33. C. Skokos and E. Gerlach, Phys. Rev. E 82(3), 036704 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.036704
34.
34. E. Gerlach, S. Eggl, and C. Skokos, Int. J. Bif. Chaos 22, 1250216 (2012).
http://dx.doi.org/10.1142/S0218127412502161
35.
35. G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn, Meccanica 15, 9 (1980).
http://dx.doi.org/10.1007/BF02128236
36.
36. G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn, Meccanica 15, 21 (1980).
http://dx.doi.org/10.1007/BF02128237
37.
37. C. Skokos, Lec. Notes Phys. 790, 63 (2010).
http://dx.doi.org/10.1007/978-3-642-04458-8_2
http://aip.metastore.ingenta.com/content/aip/journal/chaos/24/2/10.1063/1.4871477
Loading
/content/aip/journal/chaos/24/2/10.1063/1.4871477
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/24/2/10.1063/1.4871477
2014-04-14
2014-07-29

Abstract

We investigate dynamically and statistically diffusive motion in a Klein-Gordon particle chain in the presence of disorder. In particular, we examine a low energy (subdiffusive) and a higher energy (self-trapping) case and verify that subdiffusive spreading is always observed. We then carry out a statistical analysis of the motion, in both cases, in the sense of the Central Limit Theorem and present evidence of different chaos behaviors, for various groups of particles. Integrating the equations of motion for times as long as 109, our probability distribution functions always tend to Gaussians and show that the dynamics does not relax onto a quasi-periodic Kolmogorov-Arnold-Moser torus and that diffusion continues to spread chaotically for arbitrarily long times.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/24/2/1.4871477.html;jsessionid=c22je9mt6ccw.x-aip-live-03?itemId=/content/aip/journal/chaos/24/2/10.1063/1.4871477&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Complex statistics and diffusion in nonlinear disordered particle chains
http://aip.metastore.ingenta.com/content/aip/journal/chaos/24/2/10.1063/1.4871477
10.1063/1.4871477
SEARCH_EXPAND_ITEM