1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The application of complex network time series analysis in turbulent heated jets
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/24/2/10.1063/1.4875040
1.
1. Turbulence, Topics in Applied Physics, Vol. 12, edited by P. Bradshaw (Springer, Berlin, 1978).
2.
2. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (MIT Press, Cambridge, 1975), Vol. 2.
3.
3. S. N. Michas and P. N. Papanikcolaou, Desalination 248, 803 (2009).
http://dx.doi.org/10.1016/j.desal.2008.12.042
4.
4. I. Papakonstantis and G. Christodoulou, J. Hydro-environ. Res. 4, 289 (2010).
http://dx.doi.org/10.1016/j.jher.2010.07.001
5.
5. C. G. Ball, H. Fellouah, and A. Pollard, Prog. Aerosp. Sci. 50, 1 (2012).
http://dx.doi.org/10.1016/j.paerosci.2011.10.002
6.
6. C. Lai and J. Lee, J. Hydro-environ. Res. 6, 9 (2012).
http://dx.doi.org/10.1016/j.jher.2011.08.003
7.
7. J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, Eur. Phys. J. Spec. Top. 174, 157 (2009).
http://dx.doi.org/10.1140/epjst/e2009-01098-2
8.
8. Z. Gao and N. Jin, Phys. Rev. E 79, 066303 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.066303
9.
9. Y. Zou, M. Small, Z. Liu, and J. Kurths, New J. Phys. 16, 013051 (2014).
http://dx.doi.org/10.1088/1367-2630/16/1/013051
10.
10. J. Tang, Y. Wang, and F. Liu, Physica A 392, 4192 (2013).
http://dx.doi.org/10.1016/j.physa.2013.05.012
11.
11. R. Xiang, J. Zhang, X. Xu, and M. Small, Chaos 22, 013107 (2012).
http://dx.doi.org/10.1063/1.3673789
12.
12. X. Xu, J. Zhang, and M. Small, Proc. Natl. Acad. Sci. U.S.A. 105, 19601 (2008).
http://dx.doi.org/10.1073/pnas.0806082105
13.
13. L. Lacasa, B. Luque, F. Balesteros, J. Luque, and J. C. Nuno, Proc. Natl. Acad. Sci. U.S.A. 105, 4972 (2008).
http://dx.doi.org/10.1073/pnas.0709247105
14.
14. R. V. Donner, J. Heitzig, J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, Eur. Phys. J. B 84, 653 (2011).
http://dx.doi.org/10.1140/epjb/e2011-10899-1
15.
15. J. Zhanh, J. Sun, X. Luo, K. Zhang, T. Nakamura, and M. Small, Physica D 237, 2856 (2008).
http://dx.doi.org/10.1016/j.physd.2008.05.008
16.
16. C. Liu, W.-X. Zhou, and W.-K. Yuan, Physica A 389, 2675 (2010).
http://dx.doi.org/10.1016/j.physa.2010.02.043
17.
17. J. Zhang and M. Small, Phys. Rev. Lett. 96, 238701 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.238701
18.
18. Y. Yang and H. Yang, Physica A 387, 1381 (2008).
http://dx.doi.org/10.1016/j.physa.2007.10.055
19.
19. R. V. Donner, Y. Zou, J. F. Donges, N. Marwan, and J. Kurths, New J. Phys. 12, 033025 (2010).
http://dx.doi.org/10.1088/1367-2630/12/3/033025
20.
20. N. Marwan, Eur. Phys. J. Spec. Top. 164(1 ), 3 (2008).
http://dx.doi.org/10.1140/epjst/e2008-00829-1
21.
21. B. Luque, L. Lacasa, F. Ballesteros, and L. Luque, Phys. Rev. E 80, 046103 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.046103
22.
22. R. V. Donner, M. Small, J. F. Donges, N. Marwan, Y. Zou, R. Xiang, and J. Kurths, Int. J. Bifurcation Chaos 21, 1019 (2011).
http://dx.doi.org/10.1142/S0218127411029021
23.
23. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Phys. Rep. 424, 175 (2006).
http://dx.doi.org/10.1016/j.physrep.2005.10.009
24.
24. M. Small, D. M. Walker, A. Tordesillas, and C. K. Tse, Chaos 23, 013113 (2013).
http://dx.doi.org/10.1063/1.4790833
25.
25. N. Marwan, J. F. Donges, Y. Zou, R. V. Donner, and J. Kurths, Phys. Lett. A 373(46 ), 4246 (2009).
http://dx.doi.org/10.1016/j.physleta.2009.09.042
26.
26. Z. K. Gao and J. Ning-De, Chaos 19, 033137 (2009).
http://dx.doi.org/10.1063/1.3227736
27.
27. A. L. Barabasi and R. Albert, Science 286, 509 (1999).
http://dx.doi.org/10.1126/science.286.5439.509
28.
28. D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).
http://dx.doi.org/10.1038/30918
29.
29. M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A. 103, 8577 (2006).
http://dx.doi.org/10.1073/pnas.0601602103
30.
30. R. Albert and A. L. Barabasi, Rev. Mod. Phys. 74, 47 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.47
31.
31. L. D. F. Costa, F. A. Rodriques, G. Travieso, and P. R. V. Boas, Adv. Phys. 56, 167 (2007).
http://dx.doi.org/10.1080/00018730601170527
32.
32. M. Bastian, S. Heymann, and M. Jacomy, in International AAAI Conference on Weblogs and Social Media, 2009.
33.
33. X.-H. Ni, Z. Q. Jiang, and W. X. Zhou, Phys. Lett. A 373, 3822 (2009).
http://dx.doi.org/10.1016/j.physleta.2009.08.041
34.
34. L. Lacasa, B. Luque, J. Luque, and J. C. Nuno, EPL 86, 30001 (2009).
http://dx.doi.org/10.1209/0295-5075/86/30001
35.
35. A. Clauset, C. R. Shalizi, and M. E. J. Newman, SIAM Rev. 51(4 ), 661 (2009).
http://dx.doi.org/10.1137/070710111
36.
36. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, New York, 1982).
37.
37. J. Devore and K. Berk, Modern Mathematical Statistics with Applications (Springer-Verlag Publications, London, UK, 2012).
38.
38. P. Erdős and A. Rényi, Publ. Math. Debrecen 6, 290 (1959).
http://aip.metastore.ingenta.com/content/aip/journal/chaos/24/2/10.1063/1.4875040
Loading
/content/aip/journal/chaos/24/2/10.1063/1.4875040
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/24/2/10.1063/1.4875040
2014-05-07
2014-07-23

Abstract

In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method ( nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/24/2/1.4875040.html;jsessionid=3t2s196m9bb5e.x-aip-live-03?itemId=/content/aip/journal/chaos/24/2/10.1063/1.4875040&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The application of complex network time series analysis in turbulent heated jets
http://aip.metastore.ingenta.com/content/aip/journal/chaos/24/2/10.1063/1.4875040
10.1063/1.4875040
SEARCH_EXPAND_ITEM