NOTICE: Scitation Maintenance Tuesday, May 5, 2015

Scitation will be unavailable on Tuesday, May 5, 2015 between 3:00 AM and 4:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/24/3/10.1063/1.4892530
1.
1. M. Kubota, “ A mechanism for the accumulation of floating marine debris north of Hawaii,” J. Phys. Oceanogr. 24, 10591064 (1994).
http://dx.doi.org/10.1175/1520-0485(1994)024<1059:AMFTAO>2.0.CO;2
2.
2. C. Moore, “ Synthetic polymers in the marine environment: a rapidly increasing, long-term threat,” Environ. Res. 108, 131139 (2008).
http://dx.doi.org/10.1016/j.envres.2008.07.025
3.
3. N. Maximenko, J. Hafner, and P. Niiler, “ Pathways of marine debris derived from trajectories of Lagrangian drifters,” Mar. Pollut. Bull. 65, 5162 (2012).
http://dx.doi.org/10.1016/j.marpolbul.2011.04.016
4.
4. E. van Sebille, M. England, and G. Froyland, “ Origin, dynamics and evolution of ocean garbage patches from observed surface drifters,” Environ. Res. Lett. 7, 044040 (2012).
http://dx.doi.org/10.1088/1748-9326/7/4/044040
5.
5. G. Froyland, K. Padberg, M. England, and A.-M. Treguier, “ Detection of coherent oceanic structures via transfer operators,” Phys. Rev. Lett. 98, 224503 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.224503
6.
6. M. Dellnitz, G. Froyland, C. Horenkamp, K. Padberg-Gehle, and A. S. Gupta, “ Seasonal variability of the subpolar gyres in the Southern Ocean: A numerical investigation based on transfer operators,” Nonlinear Process. Geophys. 16, 655663 (2009).
http://dx.doi.org/10.5194/npg-16-655-2009
7.
7. V. Rossi, E. Ser Giacomi, C. López, and E. Hernández García, “ Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves,” Geophys. Res. Lett. 41(8), 2883–2891, doi:10.1002/(ISSN)1944-8007 (2014).
http://dx.doi.org/10.1002/(ISSN)1944-8007
8.
8. E. Kazantsev, “ Unstable periodic orbits and attractor of the barotropic ocean model,” Nonlinear processes in Geophysics 5, 193208 (1998).
http://dx.doi.org/10.5194/npg-5-193-1998
9.
9. E. Kazantsev, “ Sensitivity of the attractor of the barotropic ocean model to external influences: Approach by unstable periodic orbits,” Nonlinear process. Geophys. 8, 281300 (2001).
http://dx.doi.org/10.5194/npg-8-281-2001
10.
10. S. Khatiwala, M. Visbeck, and M. Cane, “ Accelerated simulation of passive tracers in ocean circulation models,” Ocean Modell. 9, 5169 (2005).
http://dx.doi.org/10.1016/j.ocemod.2004.04.002
11.
11. S. Khatiwala, “ A computational framework for simulation of biogeochemical tracers in the ocean,” Global Biogeochem. Cycles 21, GB3001, doi: 10.1029/2007GB002923 (2007).
http://dx.doi.org/10.1029/2007GB002923
12.
12. M. Dellnitz and O. Junge, “ On the approximation of complicated dynamical behavior,” SIAM J. Numer. Anal. 36, 491515 (1999).
http://dx.doi.org/10.1137/S0036142996313002
13.
13. M. Demers and L.-S. Young, “ Escape rates and conditionally invariant measures,” Nonlinearity 19, 377397 (2006).
http://dx.doi.org/10.1088/0951-7715/19/2/008
14.
14. Y. Masumoto, H. Sasaki, T. Kagimoto, N. Komori, A. Ishida, Y. Sasai, T. Miyama, T. Motoi, H. Mitsudera, K. Takahashi, et al., “ A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of OFES (OGCM for the Earth simulator),” J. Earth Simul. 1, 3556 (2004), see http://www.jamstec.go.jp/esc/publication/journal/jes_vol.1/pdf/JES1-3.2-masumoto.pdf.
15.
15. H. Sasaki, M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, “ An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the earth simulator,” in High Resolution Numerical Modelling of the Atmosphere and Ocean (Springer, 2008) pp. 157185.
16.
16. S. Ulam, A Collection of Mathematical Problems (Interscience, 1979).
17.
17. C. Hsu, Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems (Springer-Verlag, New York, 1987).
18.
18. G. Froyland, “ Extracting dynamical behaviour via Markov models,” in Nonlinear Dynamics and Statistics: Proceedings of the Newton Institute, Cambridge, 1998, edited by A. Mees (Birkhauser, 2001), pp. 283324.
19.
19. C. B. Paris, J. Helgers, E. van Sebille, and A. Srinivasan, “ Connectivity modeling system: A probabilistic modeling tool for the multi-scale tracking of biotic and abiotic variability in the ocean,” Environ. Modell. Softw. 42, 4754 (2013).
http://dx.doi.org/10.1016/j.envsoft.2012.12.006
20.
20. J. Knauss, Introduction to Physical Oceanography (Waveland Press Inc., 1996).
21.
21. F. Roquet, C. Wunsch, and G. Madec, “ On the patterns of wind-power input to the ocean circulation,” J. Phys. Oceanogr. 41, 23282342 (2011).
http://dx.doi.org/10.1175/JPO-D-11-024.1
22.
22. J. Milnor, “ On the concept of attractor, the theory of chaotic attractors,” Commun. Math. Phys. 99, 177195 (1985).
http://dx.doi.org/10.1007/BF01212280
23.
23. J. Norris, Markov Chains (Cambridge University Press, 1998).
24.
24. P. Koltai, “ A stochastic approach for computing the domain of attraction without trajectory simulation,” Discrete Contin. Dyn. Syst. 2011, 854863.
25.
25. R. Tarjan, “ Depth-first search and linear graph algorithms,” SIAM J. Comput. 1, 146160 (1972).
http://dx.doi.org/10.1137/0201010
26.
26. T. Kato, Perturbation Theory for Linear Operators, 2nd ed. ( Springer, Berlin, 1995).
27.
27. P. Deuflhard, W. Huisinga, A. Fischer, and C. Schütte, “ Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains,” Linear Algebra Appl. 315, 3959 (2000).
http://dx.doi.org/10.1016/S0024-3795(00)00095-1
28.
28. P. Deuflhard and M. Weber, “ Robust Perron cluster analysis in conformation dynamics,” Linear Algebra Appl. 398, 161184 (2004).
http://dx.doi.org/10.1016/j.laa.2004.10.026
29.
29. B. Gaveau and L. Schulman, “ Multiple phases in stochastic dynamics: Geometry and probabilities,” Phys. Rev. E 73, 036124 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.036124
30.
30. G. Froyland, “ On Ulam approximation of the isolated spectrum and eigenfunctions of hyperbolic maps,” Discrete Contin. Dyn. Syst. 17, 671689 (2007).
http://dx.doi.org/10.3934/dcds.2007.17.671
31.
31. E. van Sebille, L. M. Beal, and W. E. Johns, “ Advective time scales of Agulhas leakage to the North Atlantic in surface drifter observations and the 3D OFES model,” J. Phys. Oceanogr. 41, 10261034 (2011).
http://dx.doi.org/10.1175/2010JPO4602.1
32.
32. P. Brémaud, Markov Chains: Gibbs Fields, Monte Carlo simulation, and Queues ( Springer-Verlag, 1999).
33.
33. G. Froyland, “ Statistically optimal almost-invariant sets,” Physica D 200, 205219 (2005).
http://dx.doi.org/10.1016/j.physd.2004.11.008
34.
34. J. N. Moum, A. Perlin, J. D. Nash, and M. J. McPhaden, “ Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing,” Nature 500, 6467 (2013).
http://dx.doi.org/10.1038/nature12363
35.
35. G. Nelson and L. Hutchings, “ The Benguela upwelling area,” Progress Oceanogr. 12, 333356 (1983).
http://dx.doi.org/10.1016/0079-6611(83)90013-7
36.
36. J. Sprintall, S. E. Wijffels, R. Molcard, and I. Jaya, “ Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006,” J. Geophys. Res. 114, C07001, doi:10.1029/2008JC005257 (2009).
http://dx.doi.org/10.1029/2008JC005257
http://aip.metastore.ingenta.com/content/aip/journal/chaos/24/3/10.1063/1.4892530
Loading
/content/aip/journal/chaos/24/3/10.1063/1.4892530
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/24/3/10.1063/1.4892530
2014-09-02
2015-05-05

Abstract

The Ekman dynamics of the ocean surface circulation is known to contain attracting regions such as the great oceanic gyres and the associated garbage patches. Less well-known are the extents of the basins of attractions of these regions and how strongly attracting they are. Understanding the shape and extent of the basins of attraction sheds light on the question of the strength of connectivity of different regions of the ocean, which helps in understanding the flow of buoyant material like plastic litter. Using short flow time trajectory data from a global ocean model, we create a Markov chain model of the surface ocean dynamics. The surface ocean is not a conservative dynamical system as water in the ocean follows three-dimensional pathways, with upwelling and downwelling in certain regions. Using our Markov chain model, we easily compute net surface upwelling and downwelling, and verify that it matches observed patterns of upwelling and downwelling in the real ocean. We analyze the Markov chain to determine multiple attracting regions. Finally, using an eigenvector approach, we (i) identify the five major ocean garbage patches, (ii) partition the ocean into basins of attraction for each of the garbage patches, and (iii) partition the ocean into regions that demonstrate transient dynamics modulo the attracting garbage patches.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/24/3/1.4892530.html;jsessionid=1fot4b6jdnlq0.x-aip-live-06?itemId=/content/aip/journal/chaos/24/3/10.1063/1.4892530&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: How well-connected is the surface of the global ocean?
http://aip.metastore.ingenta.com/content/aip/journal/chaos/24/3/10.1063/1.4892530
10.1063/1.4892530
SEARCH_EXPAND_ITEM