Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/25/1/10.1063/1.4905201
1.
1. J. D. Jackson, Classical Electrodynamics, 3rd ed. ( John Wiley and Sons, New York, 1999).
2.
2. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics ( Addison-Wesley Publishing, Palo Alto, 1964).
3.
3. P. A. M. Dirac, “ Classical theory of radiating electrons,” Proc. R. Soc. London, Ser. A 167(929), 148169 (1938).
http://dx.doi.org/10.1098/rspa.1938.0124
4.
4. J. De Luca, “ The Lorentz-Dirac equation for linear and nonlinear potentials,” Braz. J. Phys. 27, 285 (1997).
5.
5. F. Hartung, T. Krisztin, H.-O. Walther, and J. Wu, “ Functional differential equations with state-dependent delays: Theory and applications,” in Handbook of Differential Equations ( Elsevier, 2006), Vol. 3.
6.
6. A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations ( Oxford University Press, New York, 2003).
7.
7. A. Bellen and N. Guglielmi, “ Solving neutral delay differential equations with state-dependent delays,” J. Comput. Appl. Math. 229, 350362 (2009).
http://dx.doi.org/10.1016/j.cam.2008.04.015
8.
8. J. De Luca, N. Guglielmi, A. R. Humphries, and A. Politi, J. Phys. A: Math. Theor. 43, 205103 (2010).
http://dx.doi.org/10.1088/1751-8113/43/20/205103
9.
9. J. De Luca, “ Stiff three-frequency orbit of the hydrogen atom,” Phys. Rev. E 73, 026221 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.026221
10.
10. J. De Luca, “ Variational electrodynamics of atoms,” Prog. Electromagnet. Res. B 53, 147186 (2013).
http://dx.doi.org/10.2528/PIERB13051207
11.
11. J. A. Wheeler and R. P. Feynman, “ Interaction with the absorber as the mechanism of radiation,” Rev. Mod. Phys. 17, 157 (1945).
http://dx.doi.org/10.1103/RevModPhys.17.157
12.
12. J. A. Wheeler and R. P. Feynman, “ Classical electrodynamics in terms of direct interparticle action,” Rev. Mod. Phys. 21, 425 (1949).
http://dx.doi.org/10.1103/RevModPhys.21.425
13.
13. A. D. Fokker, “ Ein invarianter Variationssatz für die Bewegung mehrerer elektrischer Massenteilchen,” Z. Phys. 58, 386 (1929).
http://dx.doi.org/10.1007/BF01340389
14.
14. K. Schwarzschild, “ Zur Elektrodynamik. II. Die elementare elektrodynamische Kraft,” Nachr. Ges. Wiss. Göttingen 128, 132 (1903).
15.
15. H. Tetrode, “ über den Wirkungszusammenhang der Welt. Eine Erweiterung der klassischen Dynamik,” Z. Phys. 10, 317 (1922).
http://dx.doi.org/10.1007/BF01332574
16.
16. J. Mehra, The Beat of a Different Drum: Life and Science of Richard Feynman ( Oxford University Press Inc., New York, 1994).
17.
17. J. De Luca, “ Variational principle for the Wheeler-Feynman electrodynamics,” J. Math. Phys. 50, 062701 (2009).
http://dx.doi.org/10.1063/1.3154509
18.
18. J. De Luca, “ Minimizers with discontinuous velocities for the electromagnetic variational method,” Phys. Rev. E 82, 026212 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.026212
19.
19. I. M. Gelfand and S. V. Fomin, Calculus of Variations ( Prentice-Hall, Englewood Cliffs, 1963).
20.
20. U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations ( SIAM, Philadelphia, 1998);
20. U. M. Ascher, R. M. M. Mattheij, and R. D. Russel, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (SIAM, Englewood Cliffs, 1995).
21.
21. A. Schild, “ Electromagnetic two-body problem,” Phys. Rev. 131, 2762 (1963).
http://dx.doi.org/10.1103/PhysRev.131.2762
22.
22. M. Schönberg, “ Classical theory of the point electron,” Phys. Rev. 69, 211 (1946).
http://dx.doi.org/10.1103/PhysRev.69.211
23.
23. J. De Luca, T. Humpries, and S. B. Rodrigues, “ Finite element boundary value integration of Wheeler-Feynman electrodynamics,” J. Comput. Appl. Math. 236(13), 33193337 (2012).
http://dx.doi.org/10.1016/j.cam.2012.02.039
http://aip.metastore.ingenta.com/content/aip/journal/chaos/25/1/10.1063/1.4905201
Loading
/content/aip/journal/chaos/25/1/10.1063/1.4905201
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/25/1/10.1063/1.4905201
2015-01-06
2016-10-01

Abstract

We generalize Wheeler-Feynman electrodynamics with a variational boundary value problem for continuous boundary segments that might include velocity discontinuity points. Critical-point orbits must satisfy the Euler-Lagrange equations of the action functional at most points, which are neutral differential delay equations (the Wheeler-Feynman equations of motion). At velocity discontinuity points, critical-point orbits must satisfy the Weierstrass-Erdmann continuity conditions for the partial momenta and the partial energies. We study a special setup having the shortest time-separation between the (infinite-dimensional) boundary segments, for which case the critical-point orbit can be found using a two-point boundary problem for an ordinary differential equation. For this simplest setup, we prove that orbits can have discontinuous velocities. We construct a numerical method to solve the Wheeler-Feynman equations together with the Weierstrass-Erdmann conditions and calculate some numerical orbits with discontinuous velocities. We also prove that the variational boundary value problem has a unique solution depending continuously on boundary data, the continuous boundary segments have velocity discontinuities along a reduced local space.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/25/1/1.4905201.html;jsessionid=LrOGKsm7q_tK5WfAV5KiCOFU.x-aip-live-02?itemId=/content/aip/journal/chaos/25/1/10.1063/1.4905201&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/25/1/10.1063/1.4905201&pageURL=http://scitation.aip.org/content/aip/journal/chaos/25/1/10.1063/1.4905201'
Right1,Right2,Right3,