Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. D. Jackson, Classical Electrodynamics, 3rd ed. ( John Wiley and Sons, New York, 1999).
2. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics ( Addison-Wesley Publishing, Palo Alto, 1964).
3. P. A. M. Dirac, “ Classical theory of radiating electrons,” Proc. R. Soc. London, Ser. A 167(929), 148169 (1938).
4. J. De Luca, “ The Lorentz-Dirac equation for linear and nonlinear potentials,” Braz. J. Phys. 27, 285 (1997).
5. F. Hartung, T. Krisztin, H.-O. Walther, and J. Wu, “ Functional differential equations with state-dependent delays: Theory and applications,” in Handbook of Differential Equations ( Elsevier, 2006), Vol. 3.
6. A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations ( Oxford University Press, New York, 2003).
7. A. Bellen and N. Guglielmi, “ Solving neutral delay differential equations with state-dependent delays,” J. Comput. Appl. Math. 229, 350362 (2009).
8. J. De Luca, N. Guglielmi, A. R. Humphries, and A. Politi, J. Phys. A: Math. Theor. 43, 205103 (2010).
9. J. De Luca, “ Stiff three-frequency orbit of the hydrogen atom,” Phys. Rev. E 73, 026221 (2006).
10. J. De Luca, “ Variational electrodynamics of atoms,” Prog. Electromagnet. Res. B 53, 147186 (2013).
11. J. A. Wheeler and R. P. Feynman, “ Interaction with the absorber as the mechanism of radiation,” Rev. Mod. Phys. 17, 157 (1945).
12. J. A. Wheeler and R. P. Feynman, “ Classical electrodynamics in terms of direct interparticle action,” Rev. Mod. Phys. 21, 425 (1949).
13. A. D. Fokker, “ Ein invarianter Variationssatz für die Bewegung mehrerer elektrischer Massenteilchen,” Z. Phys. 58, 386 (1929).
14. K. Schwarzschild, “ Zur Elektrodynamik. II. Die elementare elektrodynamische Kraft,” Nachr. Ges. Wiss. Göttingen 128, 132 (1903).
15. H. Tetrode, “ über den Wirkungszusammenhang der Welt. Eine Erweiterung der klassischen Dynamik,” Z. Phys. 10, 317 (1922).
16. J. Mehra, The Beat of a Different Drum: Life and Science of Richard Feynman ( Oxford University Press Inc., New York, 1994).
17. J. De Luca, “ Variational principle for the Wheeler-Feynman electrodynamics,” J. Math. Phys. 50, 062701 (2009).
18. J. De Luca, “ Minimizers with discontinuous velocities for the electromagnetic variational method,” Phys. Rev. E 82, 026212 (2010).
19. I. M. Gelfand and S. V. Fomin, Calculus of Variations ( Prentice-Hall, Englewood Cliffs, 1963).
20. U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations ( SIAM, Philadelphia, 1998);
20. U. M. Ascher, R. M. M. Mattheij, and R. D. Russel, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (SIAM, Englewood Cliffs, 1995).
21. A. Schild, “ Electromagnetic two-body problem,” Phys. Rev. 131, 2762 (1963).
22. M. Schönberg, “ Classical theory of the point electron,” Phys. Rev. 69, 211 (1946).
23. J. De Luca, T. Humpries, and S. B. Rodrigues, “ Finite element boundary value integration of Wheeler-Feynman electrodynamics,” J. Comput. Appl. Math. 236(13), 33193337 (2012).

Data & Media loading...


Article metrics loading...



We generalize Wheeler-Feynman electrodynamics with a variational boundary value problem for continuous boundary segments that might include velocity discontinuity points. Critical-point orbits must satisfy the Euler-Lagrange equations of the action functional at most points, which are neutral differential delay equations (the Wheeler-Feynman equations of motion). At velocity discontinuity points, critical-point orbits must satisfy the Weierstrass-Erdmann continuity conditions for the partial momenta and the partial energies. We study a special setup having the shortest time-separation between the (infinite-dimensional) boundary segments, for which case the critical-point orbit can be found using a two-point boundary problem for an ordinary differential equation. For this simplest setup, we prove that orbits can have discontinuous velocities. We construct a numerical method to solve the Wheeler-Feynman equations together with the Weierstrass-Erdmann conditions and calculate some numerical orbits with discontinuous velocities. We also prove that the variational boundary value problem has a unique solution depending continuously on boundary data, the continuous boundary segments have velocity discontinuities along a reduced local space.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd