Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/25/1/10.1063/1.4906746
1.
1. W. S. Mc Culloch and W. Pitts, Bull. Math. Biophys. 5, 115 (1943).
http://dx.doi.org/10.1007/BF02478259
2.
2. K.-I. Funahashi, Neural Networks 2, 183 (1989).
http://dx.doi.org/10.1016/0893-6080(89)90003-8
3.
3. G. Cybenko, Math. Control Signals Syst. 2, 303 (1989).
http://dx.doi.org/10.1007/BF02551274
4.
4. K. Hornik, M. Stinchcombe, and H. White, Neural Networks 2, 359 (1989).
http://dx.doi.org/10.1016/0893-6080(89)90020-8
5.
5. M. Small and C. K. Tse, Phys. Rev. E 66, 066701 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.066701
6.
6. R. P. Lippman, IEEE Commun. Mag. 27, 47 (1989).
http://dx.doi.org/10.1109/35.41401
7.
7. J. Park and I. W. Sandberg, Neural Comput. 3, 246 (1991).
http://dx.doi.org/10.1162/neco.1990.2.2.210
8.
8. J. A. Leonard and M. A. Kramer, IEEE Control Syst. 11, 31 (1991).
http://dx.doi.org/10.1109/37.75576
9.
9. S. Chen, C. E. N. Cowan, and P. M. Grant, IEEE Trans. Neural Networks 2, 302 (1991).
http://dx.doi.org/10.1109/72.80341
10.
10. K. Judd and A. Mees, Phys. D 82, 426 (1995).
http://dx.doi.org/10.1016/0167-2789(95)00050-E
11.
11. B. Pilgram, K. Judd, and A. Mees, Phys. D 170, 103 (2002).
http://dx.doi.org/10.1016/S0167-2789(02)00534-1
12.
12. N. Gershenfeld, Nature of Mathematical Modeling ( Cambridge University Press, Cambridge, 1998).
13.
13. A. Mees, Int. J. Bifurcation Chaos 1, 777 (1991).
http://dx.doi.org/10.1142/S0218127491000579
14.
14. J. Matoušek and B. Gärtner, Understanding and Using Linear Programming ( Springer-Verlag, Berlin, 2007).
15.
15. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction ( Springer, New York, NY, 2009).
16.
16. A. Mees, Dynamics of Complex Interconnected Biological Systems ( Birkhäuser, Boston, MA, 1990), p. 104.
17.
17. S. Allie and A. Mees, Phys. Rev. E 56, 346 (1997).
http://dx.doi.org/10.1103/PhysRevE.56.346
18.
18. S. Allie, A. Mees, K. Judd, and D. Watson, Phys. Rev. E 55, 87 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.87
19.
19. Y. Hirata, Phys. Rev. E 89, 052916 (2014).
http://dx.doi.org/10.1103/PhysRevE.89.052916
20.
20. F. Takens, Lect. Notes Math. 898, 366 (1981).
http://dx.doi.org/10.1007/BFb0091924
21.
21. T. Sauer, J. A. Yorke, and M. Casdagli, J. Stat. Phys. 65, 579 (1991).
http://dx.doi.org/10.1007/BF01053745
22.
22. Y. Zhang, Solving Large-Scale Linear Programs by Interior-Point Methods under the MATLAB Environment, Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, MD, Technical Report TR96-01, 1996.
23.
23. S. Mehrotra, SIAM J. Optim. 2, 575 (1992).
http://dx.doi.org/10.1137/0802028
24.
24. O. E. Rössler, Phys. Lett. A 57, 397 (1976).
http://dx.doi.org/10.1016/0375-9601(76)90101-8
25.
25. E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
26.
26. K. Kaneko, Prog. Theor. Phys. 72, 480 (1984).
http://dx.doi.org/10.1143/PTP.72.480
27.
27. E. N. Lorenz, in Proceedings of the Seminar on Predictability ( ECMWF, Reading, 1996), Vol. 1, p. 1.
28.
28. G. Sugihara and R. M. May, Nature 344, 734 (1990).
http://dx.doi.org/10.1038/344734a0
29.
29. T. M. Cover and J. A. Thomas, Elements of Information Theory ( Wiley-Interscience, New York, NY, 1991).
30.
30. R. V. Donner, J. Heitzig, J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, Eur. Phys. J. B 84, 653 (2011).
http://dx.doi.org/10.1140/epjb/e2011-10899-1
31.
31. J. H. Feldhoff, R. V. Donner, J. F. Donges, N. Marwan, and J. Kurths, Europhys. Lett. 102, 30007 (2013).
http://dx.doi.org/10.1209/0295-5075/102/30007
32.
32. B.-L. Hao and W.-M. Zheng, Applied Symbolic Dynamics and Chaos ( World Scientific, Singapore, 1998).
33.
33. N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, Phys. Rep. 438, 237 (2007).
http://dx.doi.org/10.1016/j.physrep.2006.11.001
34.
34. A. Baba and T. Komatsuzaki, Proc. Natl. Acad. Sci. U. S. A. 104, 19297 (2007).
http://dx.doi.org/10.1073/pnas.0704167104
35.
35. C. Bandt and B. Pompe, Phys. Rev. Lett. 88, 174102 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.174102
36.
36. C. Bandt, G. Keller, and B. Pompe, Nonlinearity 15, 1595 (2002).
http://dx.doi.org/10.1088/0951-7715/15/5/312
37.
37. J. M. Amigó and M. B. Kennel, Phys. D 231, 137 (2007).
http://dx.doi.org/10.1016/j.physd.2007.04.010
38.
38. J. M. Amigó, M. B. Kennel, and L. Kocarev, Phys. D 210, 77 (2005).
http://dx.doi.org/10.1016/j.physd.2005.07.006
39.
39. J. M. Amigó, R. Monetti, T. Aschenbrenner, and W. Bunk, Chaos 22, 013105 (2012).
http://dx.doi.org/10.1063/1.3673238
40.
40. E. P. Bravo, K. Aihara, and Y. Hirata, Chaos 23, 043104 (2013).
http://dx.doi.org/10.1063/1.4824313
41.
41. D. Arroyo, P. Chamorro, J. M. Amigó, F. B. Rodríguez, and P. Varona, Eur. Phys. J. Spec. Top. 222, 457 (2013).
http://dx.doi.org/10.1140/epjst/e2013-01852-9
42.
42. S. Oya, K. Aihara, and Y. Hirata, New J. Phys. 16, 115015 (2014).
http://dx.doi.org/10.1088/1367-2630/16/11/115015
43.
43. M. Goto, “ Development of the RWC music database,” in Proceedings of 18th International Congress on Acoustics (ICA 2004) (2004), pp. 553556.
44.
44.See supplementary material at http://dx.doi.org/10.1063/1.4906746 for the original violin sounds (supplementary Sound File 1) and the violin sounds generated by using the proposed barycentric coordinates (supplementary Sound File 2).[Supplementary Material]
45.
45. I. J. Good, J. R. Stat. Soc. B 14, 107 (1952).
46.
46. H. Du and L. A. Smith, J. Atmos. Sci. 71, 469 (2014).
http://dx.doi.org/10.1175/JAS-D-13-032.1
47.
47. Y. Kuramoto, Lect. Notes Phys. 39, 420 (1975).
http://dx.doi.org/10.1007/BFb0013365
48.
48. N. Takahashi, Y. Hirata, K. Aihara, and P. Mas, “ A hierarchical multi-oscillator network orchestrates the Arabidopsis circadian system,” (submitted).
49.
49. N. Nakamichi et al., Plant Cell 22, 594 (2010).
http://dx.doi.org/10.1105/tpc.109.072892
50.
50. P. Mas and R. N. Beachy, Plant J. 15, 835 (1998).
http://dx.doi.org/10.1046/j.1365-313X.1998.00253.x
51.
51. B. Wenden, D. L. Toner, S. K. Hodge, R. Grima, and A. J. Millar, Proc. Natl. Acad. Sci. U. S. A. 109, 6757 (2012).
http://dx.doi.org/10.1073/pnas.1118814109
52.
52. H. D. I. Abarbanel, Analysis of Observed Chaotic Data ( Springer-Verlag, New York, NY, 1996).
53.
53. H. Kantz and T. Schreiber, Nonlinear Time Series Analysis ( Cambridge University Press, Cambridge, 1997).
54.
54. M. Small, Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance ( World Scienctific, Singapore, 2005).
55.
55. E. B. Suckling and L. A. Smith, J. Clim. 26, 9334 (2013).
http://dx.doi.org/10.1175/JCLI-D-12-00485.1
56.
56. D. Kilminster, “ Modelling dynamical systems via behaviour criteria,” Ph.D. dissertation ( School of Mathematics and Statistics, University of Western Australia, 2003).
http://aip.metastore.ingenta.com/content/aip/journal/chaos/25/1/10.1063/1.4906746
Loading
/content/aip/journal/chaos/25/1/10.1063/1.4906746
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/25/1/10.1063/1.4906746
2015-01-22
2016-12-09

Abstract

The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/25/1/1.4906746.html;jsessionid=2kqUcjKyWVqjVV5lFLGtGXmN.x-aip-live-02?itemId=/content/aip/journal/chaos/25/1/10.1063/1.4906746&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/25/1/10.1063/1.4906746&pageURL=http://scitation.aip.org/content/aip/journal/chaos/25/1/10.1063/1.4906746'
Right1,Right2,Right3,