Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/25/10/10.1063/1.4932561
1.
1. R. J. Urick, Principles of Underwater Sound, 3rd. ed. ( McGraw-Hill, New York, NY, 1983).
2.
2. R. A. Wagstaff, “ An ambient noise model for the northeast pacific ocean basin,” IEEE J. Oceanic Eng. 30(2), 286294 (2005).
http://dx.doi.org/10.1109/JOE.2004.836993
3.
3. J. A. Hildebrand, “ Anthropogenic and natural sources of ambient noise in the ocean,” Mar. Ecol.: Prog. Ser. 395, 520 (2009).
http://dx.doi.org/10.3354/meps08353
4.
4. P. H. Dahl, J. H. Miller, D. H. Cato, and R. K. Andrew, “ Underwater ambient noise,” Acoust. Today 3(1), 2333 (2007).
http://dx.doi.org/10.1121/1.2961145
5.
5. D. H. Cato, “ A perspective on 30 years of progress in ambient noise: Source mechanisms and the characteristics of the sound field,” AIP Conf. Proc. 1495, 242 (2012).
http://dx.doi.org/10.1063/1.4765918
6.
6. S. Adams and W. Jobst, “ Statistical properties of underwater acoustic ambient noise fields,” in IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP'76 (IEEE, 1976), Vol. 1.
7.
7. J. Tegowski, G. B. Deane, A. Lisimenka, and P. Blondel, “ Spectral and statistical analyses of ambient noise,” in Proceedings of Meetings on Acoustics (Acoustical Society of America, 2014), Vol. 17(1).
8.
8. T. W. Frison, H. D. Abarbanel, J. Cembrola, and B. Neales, “ Chaos in ocean ambient noise,” J. Acoust. Soc. Am. 99(3), 15271539 (1996).
http://dx.doi.org/10.1121/1.414730
9.
9. T. W. Frison, H. D. Abarbanel, J. Cembrola, and R. Katz, “ Nonlinear analysis of environmental distortions of continuous wave signals in the ocean,” J. Acoust. Soc. Am. 99(1), 139146 (1996).
http://dx.doi.org/10.1121/1.414497
10.
10. Z. Xinhua, “ Chaotic characteristics analyses of underwater acoustic signals,” in Fourth International Conference on Signal Processing Proceedings, ICSP'98 (IEEE, 1998), Vol. 2.
11.
11. P. Grassberger and I. Procaccia, “ Characterization of strange attractors,” Phys. Rev. Lett. 50(5), 346 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.346
12.
12. P. Grassberger and I. Procaccia, “ Estimation of the Kolmogorov entropy from a chaotic signal,” Phys. Rev. A 28(4), 25912593 (1983).
http://dx.doi.org/10.1103/PhysRevA.28.2591
13.
13. A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “ Determining Lyapunov exponents from a time series,” Phys. D (Amsterdam, Neth.) 16(3), 285317 (1985).
http://dx.doi.org/10.1016/0167-2789(85)90011-9
14.
14. L. Schimansky-Geier and H. Herzel, “ Positive Lyapunov exponents in the Kramers oscillator,” J. Stat. Phys. 70(1–2), 141147 (1993).
http://dx.doi.org/10.1007/BF01053959
15.
15. T. Tanaka, K. Aihara, and M. Taki, “ Lyapunov exponents of random time series,” Phys. Rev. E 54(2), 2122 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.2122
16.
16. T. Tanaka, K. Aihara, and M. Taki, “ Analysis of positive Lyapunov exponents from random time series,” Phys. D (Amsterdam, Neth.) 111(1), 4250 (1998).
http://dx.doi.org/10.1016/S0167-2789(97)80004-8
17.
17. J.-P. Eckmann and D. Ruelle, “ Ergodic theory of chaos and strange attractors,” Rev. Mod. Phys. 57(3), 617 (1985).
http://dx.doi.org/10.1103/RevModPhys.57.617
18.
18. Ya. B. Pesin, Dimension Theory in Dynamical Systems ( University of Chicago Press, 1998).
19.
19. J. Beran, Statistics for Long-Memory Processes ( CRC Press, Boca Raton, FL, 1994), p. 319.
20.
20. N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, “ Geometry from a time series,” Phys. Rev. Lett. 45(9), 712 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.712
21.
21. D. Ruelle and F. Takens, “ On the nature of turbulence,” Commun. Math. Phys. 20(3), 167192 (1971).
http://dx.doi.org/10.1007/BF01646553
22.
22. F. Takens, “ Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Warwick 1980 ( Springer, Berlin, Heidelberg, 1981), pp. 366381.
23.
23. T. Sauer, J. A. Yorke, and M. Casdagli, “ Embedology,” J. Stat. Phys. 65(3–4), 579616 (1991).
http://dx.doi.org/10.1007/BF01053745
24.
24. A. M. Fraser and H. L. Swinney, “ Independent coordinates for strange attractors from mutual information,” Phys. Rev. A 33(2), 1134 (1986).
http://dx.doi.org/10.1103/PhysRevA.33.1134
25.
25. M. B. Kennel, R. Brown, and H. D. Abarbanel, “ Determining embedding dimension for phase-space reconstruction using a geometrical construction,” Phys. Rev. A 45(6), 3403 (1992).
http://dx.doi.org/10.1103/PhysRevA.45.3403
26.
26. P. Grassberger, “ Evidence for climatic attractors: Grassberger replies,” Nature 326, 524 (1987).
http://dx.doi.org/10.1038/326524a0
27.
27. A. Provenzale, L. A. Smith, R. Vio, and G. Murante, “ Distinguishing between low-dimensional dynamics and randomness in measured time series,” Physics D 58, 3149 (1992).
http://dx.doi.org/10.1016/0167-2789(92)90100-2
28.
28. J. Theiler, “ Spurious dimension from correlation algorithms applied to limited time-series data,” Phys. Rev. A 34(3), 2427 (1986).
http://dx.doi.org/10.1103/PhysRevA.34.2427
29.
29. C. Nicolis and G. Nicolis, “ Is there a climatic attractor?,” Nature 311, 529532 (1984).
http://dx.doi.org/10.1038/311529a0
30.
30. P. Grassberger, “ Do climatic attractors exist?,” Nature 323(6089), 609612 (1986).
http://dx.doi.org/10.1038/323609a0
31.
31. C. Nicolis and G. Nicolis, “ Evidence for climatic attractors,” Nature 326, 523524 (1987).
http://dx.doi.org/10.1038/326523b0
32.
32. A. R. Osborne and A. Provenzale, “ Finite correlation dimension for stochastic systems with power-law spectra,” Physica D 35, 357381 (1989).
http://dx.doi.org/10.1016/0167-2789(89)90075-4
33.
33. J. Theiler and P. E. Rapp, “ Re- examination of the evidence for low-dimensional, nonlinear structure in the human electroencephalogram,” Electroencephalogr. Clin. Neurophysiol. 98, 213222 (1996).
http://dx.doi.org/10.1016/0013-4694(95)00240-5
34.
34. H. Kantz and T. Schreiber, “ Dimension estimates and physiological data,” Chaos 5(1), 143154 (1995).
http://dx.doi.org/10.1063/1.166096
35.
35. M. Casdagli, “ Chaos and deterministic versus stochastic non-linear modelling,” J. R. Stat. Soc., Ser. B 52, 303328 (1992).
36.
36. M. Casdagli and A. S. Weigend, “ Exploring the continuum between deterministic and stochastic modeling,” in Santa Fe Institute Studies in the Science of Complexity-Proceedings (Addison-Wesley publishing co, 1993), Vol. 15.
37.
37. F. Laio, A. Porporato, L. Ridolfi, and S. Tamea, “ Detecting nonlinearity in time series driven by non-Gaussian noise: The case of river flows,” Nonlinear Process. Geophys. 11(4), 463470 (2004).
http://dx.doi.org/10.5194/npg-11-463-2004
38.
38. J. Farmer and J. Sidorowich, “ Predicting chaotic time series,” Phys. Rev. Lett. 59(4), 845848 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.845
39.
39. M. Sano and Y. Sawada, “ Measurement of the Lyapunov spectrum from a chaotic time series,” Phys. Rev. Lett. 55(10), 1082 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.1082
40.
40. J. P. Eckmann, S. O. Kamphorst, D. Ruelle, and S. Ciliberto, “ Lyapunov exponents from time series,” Phys. Rev. A 34(6), 49714979 (1986).
http://dx.doi.org/10.1103/PhysRevA.34.4971
41.
41. R. Gencay and W. D. Dechert, “ An algorithm for the n Lyapunov exponents of an n-dimensional unknown dynamical system,” Physica D 59, 142157 (1992).
http://dx.doi.org/10.1016/0167-2789(92)90210-E
42.
42. J. B. Kadtke, J. Brush, and J. Holzfuss, “ Global dynamical equations and Lyapunov exponents from noisy chaotic time series,” Int. J. Bifurcation Chaos 3, 607616 (1993).
http://dx.doi.org/10.1142/S0218127493000507
43.
43. F. Mitschke and M. Dämmig, “ Chaos versus noise in experimental data,” Int. J. Bifurcation Chaos 3(3), 693702 (1993).
http://dx.doi.org/10.1142/S021812749300060X
44.
44. J. Fell, J. Röschke, and P. Beckmann, “ Deterministic chaos and the first positive Lyapunov exponent: A nonlinear analysis of the human electroencephalogram during sleep,” Biol. Cybern. 69(2), 139146 (1993).
http://dx.doi.org/10.1007/BF00226197
45.
45. A. Maus and J. C. Sprott, “ Evaluating Lyapunov exponent spectra with neural networks,” Chaos Solitons Fractals 51, 1321 (2013).
http://dx.doi.org/10.1016/j.chaos.2013.03.001
46.
46. J. B. Gao, J. Hu, W. W. Tung, and Y. H. Cao, “ Distinguishing chaos from noise by scale-dependent Lyapunov exponent,” Phys. Rev. E 74, 066204 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.066204
47.
47. J. B. Gao, Y. H. Cao, W. W. Tung, and J. Hu, Multiscale Analysis of Complex Time Series: Integration of Chaos and Random Fractal Theory, and Beyond ( Wiley, New York, 2007).
48.
48. J. B. Gao, W. W. Tung, and J. Hu, “ Quantifying dynamical predictability: The pseudo-ensemble approach,” Chin. Ann. Math. B 30, 569 (2009).
http://dx.doi.org/10.1007/s11401-009-0108-3
49.
49. J. Hu, J. B. Gao, and W. W. Tung, “ Characterizing heart rate variability by scale-dependent Lyapunov exponent,” Chaos 19, 028506 (2009).
http://dx.doi.org/10.1063/1.3152007
50.
50. J. Hu, J. B. Gao, W. W. Tung, and Y. H. Cao, “ Multiscale analysis of heart rate variability: A comparison of different complexity measures,” Ann. Biomed. Eng. 38, 854864 (2010).
http://dx.doi.org/10.1007/s10439-009-9863-2
51.
51. J. B. Gao, J. Hu, X. Mao, and W. W. Tung, “ Detecting low-dimensional chaos by the noise titration technique: Possible problems and remedies,” Chaos Solitons Fractals 45, 213223 (2012).
http://dx.doi.org/10.1016/j.chaos.2011.12.004
52.
52. J. Hu and J. Gao, “ Multiscale characterization of sea clutter by scale-dependent Lyapunov exponent,” Math. Prob. Eng. 2013, 584252.
http://dx.doi.org/10.1155/2013/584252
53.
53. Q. Fan, Y. Wang, and L. Zhu, “ Complexity analysis of spatial–temporal precipitation system by PCA and SDLE,” Appl. Math. Model. 37(6), 40594066 (2013).
http://dx.doi.org/10.1016/j.apm.2012.09.009
54.
54. C. Bandt and B. Pompe, “ Permutation entropy: A natural complexity measure for time series,” Phys. Rev. Lett. 88, 174102 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.174102
55.
55. M. Zanin, L. Zunino, O. A. Rosso, and D. Papo, “ Permutation entropy and its main biomedical and econophysics applications: A review,” Entropy 14(8), 15531577 (2012).
http://dx.doi.org/10.3390/e14081553
56.
56. M. Riedl, A. Müller, and N. Wessel, “ Practical considerations of permutation entropy,” Eur. Phys. J. Spec. Top. 222(2), 249262 (2013).
http://dx.doi.org/10.1140/epjst/e2013-01862-7
57.
57. C. W. Kulp and L. Zunino, “ Discriminating chaotic and stochastic dynamics through the permutation spectrum test,” Chaos 24(3), 033116 (2014).
http://dx.doi.org/10.1063/1.4891179
58.
58. M. T. Rosenstein, J. J. Collins, and C. J. De Luca, “ A practical method for calculating largest Lyapunov exponents from small data sets,” Physica D (Amsterdam, Neth.) 65(1), 117134 (1993).
http://dx.doi.org/10.1016/0167-2789(93)90009-P
59.
59. M. Eiswirth, T. M. Kruel, G. Ertl, and F. Schneider, “ Hyperchaos in a chemical reaction,” Chem. Phys. Lett. 193(4), 305310 (1992).
http://dx.doi.org/10.1016/0009-2614(92)85672-W
60.
60. N. Kuznetsov, S. Bonnette, J. Gao, and M. A. Riley, “ Adaptive fractal analysis reveals limits to fractal scaling in center of pressure trajectories,” Ann. Biomed. Eng. 41(8), 16461660 (2013).
http://dx.doi.org/10.1007/s10439-012-0646-9
61.
61. R. Brown, P. Bryant, and H. D. I. Abarbanel, “ Computing the Lyapunov spectrum of a dynamical system from an observed time series,” Phys. Rev. A 43, 27872806 (1991).
http://dx.doi.org/10.1103/PhysRevA.43.2787
62.
62. H. Kantz, “ A robust method to estimate the maximal Lyapunov exponent of a time series,” Phys. Lett. A 185(1), 7787 (1994).
http://dx.doi.org/10.1016/0375-9601(94)90991-1
63.
63. C. Penland and B. D. Ewald, “ On modelling physical systems with stochastic models: Diffusion versus Lévy processes,” Philos. Trans. R. Soc. London, Ser. A 366(1875), 24552474 (2008).
http://dx.doi.org/10.1098/rsta.2008.0051
64.
64. C. Penland and P. D. Sardeshmukh, “ Alternative interpretations of power-law distributions found in nature,” Chaos 22(2), 023119 (2012).
http://dx.doi.org/10.1063/1.4706504
65.
65. P. D. Sardeshmukh and C. Penland, “ Understanding the distinctively skewed and heavy tailed character of atmospheric and oceanic probability distributions,” Chaos 25(3), 036410 (2015).
http://dx.doi.org/10.1063/1.4914169
66.
66. T. Serre, Z. Kolláth, and J. R. Buchler, “ Search for low-dimensional nonlinear behavior in irregular variable stars. The global flow reconstruction method,” Astron. Astrophys. 311, 833844 (1996).
http://aip.metastore.ingenta.com/content/aip/journal/chaos/25/10/10.1063/1.4932561
Loading
/content/aip/journal/chaos/25/10/10.1063/1.4932561
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/25/10/10.1063/1.4932561
2015-10-12
2016-12-04

Abstract

Two decades ago, it was shown that ambient noise exhibits low dimensional chaotic behavior. Recent new techniques in nonlinear science can effectively detect the underlying dynamics in noisy time series. In this paper, the presence of low dimensional deterministic dynamics in ambient noise is investigated using diverse nonlinear techniques, including correlation dimension, Lyapunov exponent, nonlinear prediction, and entropy based methods. The consistent interpretation of different methods demonstrates that ambient noise can be best modeled as nonlinear stochastic dynamics, thus rejecting the hypothesis of low dimensional chaotic behavior. The ambient noise data utilized in this study are of duration 60 s measured at South China Sea.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/25/10/1.4932561.html;jsessionid=-or6fy1CIY3Camq-uC5bO5E7.x-aip-live-02?itemId=/content/aip/journal/chaos/25/10/10.1063/1.4932561&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/25/10/10.1063/1.4932561&pageURL=http://scitation.aip.org/content/aip/journal/chaos/25/10/10.1063/1.4932561'
Right1,Right2,Right3,