Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/25/11/10.1063/1.4934554
1.
1. R. Albert and A. L. Barabási, “ Statistical mechanics of complex networks,” Rev. Mod. Phys. 74, 4797 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.47
2.
2. M. E. J. Newman, “ The structure and function of complex networks,” SIAM Rev. 45, 167256 (2003).
http://dx.doi.org/10.1137/S003614450342480
3.
3. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “ Complex networks: Structure and dynamics,” Phys. Rep. 424, 175308 (2006).
http://dx.doi.org/10.1016/j.physrep.2005.10.009
4.
4. R. Cohen and S. Havlin, Complex Networks: Structure, Robustness and Function ( Cambridge University Press, Cambridge, 2010).
5.
5. M. E. J. Newman, Networks: An Introduction ( Oxford University Press, Oxford, 2010).
6.
6. H. D. I. Abarbanel, Analysis of Observed Chaotic Data ( Springer, New York, 1996).
7.
7. J. C. Sprott, Chaos and Time-Series Analysis ( Oxford University Press, Oxford, 2003).
8.
8. H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, 2nd ed. ( Cambridge University Press, Cambridge, 2004).
9.
9. G. Csárdi and T. Nepusz, “ The igraph software package for complex network research,” InterJ. Complex Syst. CX.18, 1695 (2006).
10.
10. D. A. Schult and P. J. Swart, “ Exploring network structure, dynamics, and function using NetworkX,” in Proceedings of the 7th Python in Science Conferences (SciPy 2008) (2008), Vol. 2008, pp. 1116.
11.
11. R. Hegger, H. Kantz, and T. Schreiber, “ Practical implementation of nonlinear time series methods: The TISEAN package,” Chaos 9, 413435 (1999).
http://dx.doi.org/10.1063/1.166424
12.
12. C. Zhou, L. Zemanová, G. Zamora, C. C. Hilgetag, and J. Kurths, “ Hierarchical organization unveiled by functional connectivity in complex brain networks,” Phys. Rev. Lett. 97, 238103 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.238103
13.
13. C. Zhou, L. Zemanová, G. Zamora-Lopez, C. C. Hilgetag, and J. Kurths, “ Structure–function relationship in complex brain networks expressed by hierarchical synchronization,” New J. Phys. 9, 178 (2007).
http://dx.doi.org/10.1088/1367-2630/9/6/178
14.
14. E. Bullmore and O. Sporns, “ Complex brain networks: Graph theoretical analysis of structural and functional systems,” Nat. Rev. Neurosci. 10, 186198 (2009).
http://dx.doi.org/10.1038/nrn2575
15.
15. A. A. Tsonis and P. J. Roebber, “ The architecture of the climate network,” Physica A 333, 497504 (2004).
http://dx.doi.org/10.1016/j.physa.2003.10.045
16.
16. A. A. Tsonis and K. L. Swanson, “ Topology and predictability of El Niño and La Niña networks,” Phys. Rev. Lett. 100, 228502 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.228502
17.
17. K. Yamasaki, A. Gozolchiani, and S. Havlin, “ Climate networks around the globe are significantly affected by El Niño,” Phys. Rev. Lett. 100, 228501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.228501
18.
18. J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, “ Complex networks in climate dynamics—Comparing linear and nonlinear network construction methods,” Eur. Phys. J. ST 174, 157179 (2009).
http://dx.doi.org/10.1140/epjst/e2009-01098-2
19.
19. J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, “ The backbone of the climate network,” Europhys. Lett. 87, 48007 (2009).
http://dx.doi.org/10.1209/0295-5075/87/48007
20.
20. J. F. Donges, I. Petrova, A. Loew, N. Marwan, and J. Kurths, “ How complex climate networks complement eigen techniques for the statistical analysis of climatological data,” Clim. Dyn. (published online 2015).
http://dx.doi.org/10.1007/s00382-015-2479-3
21.
21. W.-Q. Huang, X.-T. Zhuang, and S. Yao, “ A network analysis of the Chinese stock market,” Physica A 388, 29562964 (2009).
http://dx.doi.org/10.1016/j.physa.2009.03.028
22.
22. R. V. Donner, M. Small, J. F. Donges, N. Marwan, Y. Zou, R. Xiang, and J. Kurths, “ Recurrence-based time series analysis by means of complex network methods,” Int. J. Bifurcation Chaos 21, 10191046 (2011).
http://dx.doi.org/10.1142/S0218127411029021
23.
23. X. Xu, J. Zhang, and M. Small, “ Superfamily phenomena and motifs of networks induced from time series,” Proc. Natl. Acad. Sci. U.S.A. 105, 1960119605 (2008).
http://dx.doi.org/10.1073/pnas.0806082105
24.
24. N. Marwan, J. F. Donges, Y. Zou, R. V. Donner, and J. Kurths, “ Complex network approach for recurrence analysis of time series,” Phys. Lett. A 373, 42464254 (2009).
http://dx.doi.org/10.1016/j.physleta.2009.09.042
25.
25. R. V. Donner, Y. Zou, J. F. Donges, N. Marwan, and J. Kurths, “ Recurrence networks—A novel paradigm for nonlinear time series analysis,” New J. Phys. 12, 033025 (2010).
http://dx.doi.org/10.1088/1367-2630/12/3/033025
26.
26. J. F. Donges, J. Heitzig, R. V. Donner, and J. Kurths, “ Analytical framework for recurrence network analysis of time series,” Phys. Rev. E 85, 046105 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.046105
27.
27. G. Nicolis, A. Garciá Cantú, and C. Nicolis, “ Dynamical aspects of interaction networks,” Int. J. Bifurcation Chaos 15, 3467 (2005).
http://dx.doi.org/10.1142/S0218127405014167
28.
28. L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuno, “ From time series to complex networks: The visibility graph,” Proc. Natl. Acad. Sci. U.S.A. 105, 49724975 (2008).
http://dx.doi.org/10.1073/pnas.0709247105
29.
29. R. V. Donner and J. F. Donges, “ Visibility graph analysis of geophysical time series: Potentials and possible pitfalls,” Acta Geophys. 60, 589623 (2012).
http://dx.doi.org/10.2478/s11600-012-0032-x
30.
30. J. F. Donges, R. V. Donner, and J. Kurths, “ Testing time series irreversibility using complex network methods,” Europhys. Lett. 102, 10004 (2013).
http://dx.doi.org/10.1209/0295-5075/102/10004
31.
31. N. P. Subramaniyam and J. Hyttinen, “ Characterization of dynamical systems under noise using recurrence networks: Application to simulated and EEG data,” Phys. Lett. A 378, 34643474 (2014).
http://dx.doi.org/10.1016/j.physleta.2014.10.005
32.
32. N. P. Subramaniyam, J. F. Donges, and J. Hyttinen, “ Signatures of chaotic and stochastic dynamics uncovered with ε-recurrence networks,” Proc. R. Soc. A—Math. Phys. (in press).
33.
33.See supplemental material at http://dx.doi.org/10.1063/1.4934554 for a comprehensive pyunicorn API documentation and exemplary code.[Supplementary Material]
34.
34. T. E. Oliphant, “ Python for scientific computing,” Comput. Sci. Eng. 9, 1020 (2007).
http://dx.doi.org/10.1109/MCSE.2007.58
35.
35. K. J. Millman and M. Aivazis, “ Python for scientists and engineers,” Comput. Sci. Eng. 13, 912 (2011).
http://dx.doi.org/10.1109/MCSE.2011.36
36.
36. F. Pérez and B. E. Granger, “ Ipython: A system for interactive scientific computing,” Comput. Sci. Eng. 9, 2129 (2007).
http://dx.doi.org/10.1109/MCSE.2007.53
37.
37. S. van der Walt, S. C. Colbert, and G. Varoquaux, “ The numpy array: A structure for efficient numerical computation,” Comput. Sci. Eng. 13, 2230 (2011).
http://dx.doi.org/10.1109/MCSE.2011.37
38.
38. E. Jones, T. Oliphant, and P. Peterson et al., “ SciPy: Open source scientific tools for Python,” 2001, Online, http://www.scipy.org/ (accessed May 30, 2015).
39.
39. J. D. Hunter, “ Matplotlib: A 2d graphics environment,” Comput. Sci. Eng. 9, 9095 (2007).
http://dx.doi.org/10.1109/MCSE.2007.55
40.
40. T. Nocke, S. Buschmann, J. F. Donges, N. Marwan, H.-J. Schulz, and C. Tominski, “ Review: Visual analytics of climate networks,” Nonlinear Proc. Geophys. 22, 545570 (2015).
http://dx.doi.org/10.5194/npg-22-545-2015
41.
41. C. Tominski, J. Abello, and H. Schumann, “ CGV–an interactive graph visualization system,” Comput. Graph. 33, 660678 (2009).
http://dx.doi.org/10.1016/j.cag.2009.06.002
42.
42. C. Tominski, J. F. Donges, and T. Nocke, “ Information visualization in climate research,” in 15th International Conference on Information Visualisation (IV) (IEEE, 2011), pp. 298305.
43.
43. S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith, “ Cython: The best of both worlds,” Comput. Sci. Eng. 13, 3139 (2011).
http://dx.doi.org/10.1109/MCSE.2010.118
44.
44. M. E. J. Newman, “ A measure of betweenness centrality based on random walks,” Soc. Networks 27, 3954 (2005).
http://dx.doi.org/10.1016/j.socnet.2004.11.009
45.
45. A. Arenas, A. Cabrales, A. Díaz-Guilera, R. Guimerà, and F. Vega-Redondo, “ Search and congestion in complex networks,” in Statistical Mechanics of Complex Networks, Lecture Notes in Physics Vol. 625, edited by R. Pastor-Satorras, M. Rubi, and A. Díaz-Guilera ( Springer, Berlin/Heidelberg, 2003), pp. 175194.
46.
46. U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall, “ GraphML progress report. Structural layer proposal,” in Proceedings 9th International Symposium on Graph Drawing (GD'01), edited by Department of Computer & Information Science, University of Konstanz, Germany (Springer, 2002), pp. 501512.
47.
47. M. Bastian, S. Heymann, and M. Jacomy, “ Gephi: An open source software for exploring and manipulating networks,” in Proceedings of the International AAAI Conference on Weblogs and Social Media (2009).
48.
48. M. Barthélemy, “ Spatial networks,” Phys. Rep. 499, 1101 (2011).
http://dx.doi.org/10.1016/j.physrep.2010.11.002
49.
49. A. A. Tsonis, K. L. Swanson, and G. Wang, “ On the role of atmospheric teleconnections in climate,” J. Clim. 21, 29903001 (2008).
http://dx.doi.org/10.1175/2007JCLI1907.1
50.
50. M. Wiedermann, J. F. Donges, J. Kurths, and R. V. Donner, “ Spatial network surrogates for disentangling complex system structure from spatial embedding of nodes,” preprint arXiv:150909293 (2015).
51.
51. M. T. Gastner and M. E. J. Newman, “ The spatial structure of networks,” Eur. Phys. J. B 49, 247252 (2006).
http://dx.doi.org/10.1140/epjb/e2006-00046-8
52.
52. J. F. Donges, H. C. H. Schultz, N. Marwan, Y. Zou, and J. Kurths, “ Investigating the topology of interacting networks—Theory and application to coupled climate subnetworks,” Eur. Phys. J. B 84, 635652 (2011).
http://dx.doi.org/10.1140/epjb/e2011-10795-8
53.
53. M. Wiedermann, J. F. Donges, J. Heitzig, and J. Kurths, “ Node-weighted interacting network measures improve the representation of real-world complex systems,” Europhys. Lett. 102, 28007 (2013).
http://dx.doi.org/10.1209/0295-5075/102/28007
54.
54. S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, “ Catastrophic cascade of failures in interdependent networks,” Nature 464, 10251028 (2010).
http://dx.doi.org/10.1038/nature08932
55.
55. J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, “ Networks formed from interdependent networks,” Nat. Phys. 8, 4048 (2012).
http://dx.doi.org/10.1038/nphys2180
56.
56. S. Boccaletti, G. Bianconi, R. Criado, C. Del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendina-Nadal, Z. Wang, and M. Zanin, “ The structure and dynamics of multilayer networks,” Phys. Rep. 544, 1122 (2014).
http://dx.doi.org/10.1016/j.physrep.2014.07.001
57.
57. M. Girvan and M. E. J. Newman, “ Community structure in social and biological networks,” Proc. Natl. Acad. Sci. U.S.A. 99, 78217826 (2002).
http://dx.doi.org/10.1073/pnas.122653799
58.
58. M. E. J. Newman, “ Modularity and community structure in networks,” Proc. Natl. Acad. Sci. U.S.A. 103, 85778582 (2006).
http://dx.doi.org/10.1073/pnas.0601602103
59.
59. S. Fortunato, “ Community detection in graphs,” Phys. Rep. 486, 75174 (2010).
http://dx.doi.org/10.1016/j.physrep.2009.11.002
60.
60. P. Erdős and A. Rényi, “ On random graphs I,” Publ. Math. Debrecen 6, 290297 (1959).
61.
61. W. W. Zachary, “ An information flow model for conflict and fission in small groups,” J. Anthropol. Res. 33, 452473 (1977).
62.
62. M. Wiedermann, J. F. Donges, D. Handorf, J. Kurths, and R. V. Donner, “ Hierarchical structures in northern hemispheric extratropical winter ocean-atmosphere interactions,” preprint arXiv:150606634 (2015).
63.
63. J. H. Feldhoff, R. V. Donner, J. F. Donges, N. Marwan, and J. Kurths, “ Geometric detection of coupling directions by means of inter-system recurrence networks,” Phys. Lett. A 376, 35043513 (2012).
http://dx.doi.org/10.1016/j.physleta.2012.10.008
64.
64. J. Heitzig, J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, “ Node-weighted measures for complex networks with spatially embedded, sampled, or differently sized nodes,” Eur. Phys. J. B 85, 38 (2012).
http://dx.doi.org/10.1140/epjb/e2011-20678-7
65.
65. A. Rheinwalt, N. Marwan, J. Kurths, P. Werner, and F.-W. Gerstengarbe, “ Boundary effects in network measures of spatially embedded networks,” Europhys. Lett. 100, 28002 (2012).
http://dx.doi.org/10.1209/0295-5075/100/28002
66.
66. A. Radebach, R. V. Donner, J. Runge, J. F. Donges, and J. Kurths, “ Disentangling different types of El Niño episodes by evolving climate network analysis,” Phys. Rev. E 88, 052807 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.052807
67.
67. N. Molkenthin, K. Rehfeld, V. Stolbova, L. Tupikina, and J. Kurths, “ On the influence of spatial sampling on climate networks,” Nonlinear Proc. Geophys. 21, 651657 (2014).
http://dx.doi.org/10.5194/npg-21-651-2014
68.
68. D. C. Zemp, M. Wiedermann, J. Kurths, A. Rammig, and J. F. Donges, “ Node-weighted measures for complex networks with directed and weighted edges for studying continental moisture recycling,” Europhys. Lett. 107, 58005 (2014).
http://dx.doi.org/10.1209/0295-5075/107/58005
69.
69. D. C. Zemp, C.-F. Schleussner, H. M. J. Barbosa, R. J. Van der Ent, J. F. Donges, J. Heinke, G. Sampaio, and A. Rammig, “ On the importance of cascading moisture recycling in South America,” Atmos. Chem. Phys. 14, 1333713359 (2014).
http://dx.doi.org/10.5194/acp-14-13337-2014
70.
70. J. H. Feldhoff, S. Lange, J. Volkholz, J. F. Donges, J. Kurths, and F.-W. Gerstengarbe, “ Complex networks for climate model evaluation with application to statistical versus dynamical modeling of South American climate,” Clim. Dyn. 44, 15671581 (2015).
http://dx.doi.org/10.1007/s00382-014-2182-9
71.
71. S. Lange, J. F. Donges, J. Volkholz, and J. Kurths, “ Local difference measures between complex networks for dynamical system model evaluation,” PLoS ONE 10, e0118088 (2015).
http://dx.doi.org/10.1371/journal.pone.0118088
72.
72. A. Rheinwalt, N. Boers, N. Marwan, J. Kurths, P. Hoffmann, F.-W. Gerstengarbe, and P. Werner, “ Non-linear time series analysis of precipitation events using regional climate networks for Germany,” Clim. Dyn. (published online 2015).
http://dx.doi.org/10.1007/s00382-015-2632-z
73.
73. N. Molkenthin, K. Rehfeld, N. Marwan, and J. Kurths, “ Networks from flows—From dynamics to topology,” Sci. Rep. 4, 4119 (2014).
http://dx.doi.org/10.1038/srep04119
74.
74. T. M. Cover and J. A. Thomas, Elements of Information Theory ( John Wiley & Sons, Hoboken, 2006).
75.
75. C. E. Shannon, “ A Mathematical Theory of Communication,” Bell Syst. Tech. J. 27, 379423 (1948).
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
76.
76. M. Paluš, “ Coarse-grained entropy rates for characterization of complex time series,” Physica D 93, 6477 (1996).
http://dx.doi.org/10.1016/0167-2789(95)00301-0
77.
77. K. Hlaváčková-Schindler, M. Paluš, M. Vejmelka, and J. Bhattacharya, “ Causality detection based on information-theoretic approaches in time series analysis,” Phys. Rep. 441, 146 (2007).
http://dx.doi.org/10.1016/j.physrep.2006.12.004
78.
78. A. Kraskov, H. Stögbauer, and P. Grassberger, “ Estimating mutual information,” Phys. Rev. E 69, 066138 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.066138
79.
79. J. Runge, J. Heitzig, N. Marwan, and J. Kurths, “ Quantifying causal coupling strength: A lag-specific measure for multivariate time series related to transfer entropy,” Phys. Rev. E 86, 061121 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.061121
80.
80. J. Hlinka, D. Hartman, M. Vejmelka, J. Runge, N. Marwan, J. Kurths, and M. Palus, “ Reliability of inference of directed climate networks using conditional mutual information,” Entropy 15, 20232045 (2013).
http://dx.doi.org/10.3390/e15062023
81.
81. T. Schreiber, “ Measuring information transfer,” Phys. Rev. Lett. 85, 461464 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.461
82.
82. B. Pompe and J. Runge, “ Momentary information transfer as a coupling measure of time series,” Phys. Rev. E 83, 051122 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.051122
83.
83. S. Frenzel and B. Pompe, “ Partial mutual information for coupling analysis of multivariate time series,” Phys. Rev. Lett. 99, 204101 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.204101
84.
84. J. Runge, V. Petoukhov, and J. Kurths, “ Quantifying the strength and delay of climatic interactions: The ambiguities of cross correlation and a novel measure based on graphical models,” J. Clim. 27, 720739 (2014).
http://dx.doi.org/10.1175/JCLI-D-13-00159.1
85.
85. M. Eichler, “ Graphical modelling of multivariate time series,” Probab. Theory Relat. Fields 153, 233268 (2012).
http://dx.doi.org/10.1007/s00440-011-0345-8
86.
86. J. Runge, J. Heitzig, V. Petoukhov, and J. Kurths, “ Escaping the curse of dimensionality in estimating multivariate transfer entropy,” Phys. Rev. Lett. 108, 258701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.258701
87.
87. C.-F. Schleussner, J. Runge, J. Lehmann, and A. Levermann, “ The role of the North Atlantic overturning and deep ocean for multi-decadal global-mean-temperature variability,” Earth Syst. Dyn. 5, 103115 (2014).
http://dx.doi.org/10.5194/esd-5-103-2014
88.
88. G. Balasis, R. V. Donner, S. M. Potirakis, J. Runge, C. Papadimitriou, I. Daglis, K. Eftaxis, and J. Kurths, “ Statistical mechanics and information-theoretic perspectives on complexity in the Earth system,” Entropy 15, 48444888 (2013).
http://dx.doi.org/10.3390/e15114844
89.
89. J. Runge, V. Petoukhov, J. F. Donges, J. Hlinka, N. Jajcay, M. Vejmelka, D. Hartman, N. Marwan, M. Paluš, and J. Kurths, “ Identifying causal gateways and mediators in complex spatio-temporal systems,” Nat. Commun. 6, 8502 (2015).
http://dx.doi.org/10.1038/ncomms9502
90.
90. J. Runge, “ Quantifying information transfer and mediation along causal pathways in complex systems,” preprint arXiv:150803808 (2015).
91.
91. J. F. Donges, “ Functional network macroscopes for probing past and present Earth system dynamics: Complex hierarchical interactions, tipping points, and beyond,” Ph.D. dissertation, Humboldt University, Berlin, Germany, 2012.
92.
92. J. Ludescher, A. Gozolchiani, M. I. Bogachev, A. Bunde, S. Havlin, and H. J. Schellnhuber, “ Improved El Nino forecasting by cooperativity detection,” Proc. Natl. Acad. Sci. U.S.A. 110, 1174211745 (2013).
http://dx.doi.org/10.1073/pnas.1309353110
93.
93. J. Ludescher, A. Gozolchiani, M. I. Bogachev, A. Bunde, S. Havlin, and H. J. Schellnhuber, “ Very early warning of next El Niño,” Proc. Natl. Acad. Sci. U.S.A. 111, 20642066 (2014).
http://dx.doi.org/10.1073/pnas.1323058111
94.
94. H. Ihshaish, A. Tantet, J. C. M. Dijkzeul, and H. A. Dijkstra, “ Par@Graph—A parallel toolbox for the construction and analysis of large complex climate networks,” Geosci. Model Dev. 8, 33213331 (2015).
http://dx.doi.org/10.5194/gmd-8-3321-2015
95.
95. Q. Y. Feng and H. A. Dijkstra, “ Are North Atlantic multidecadal SST anomalies westward propagating?Geophys. Res. Lett. 41, 541546, doi:10.1002/2013GL058687 (2014).
http://dx.doi.org/10.1002/2013GL058687
96.
96. M. Mheen, H. A. Dijkstra, A. Gozolchiani, M. den Toom, J. Feng, Q. Kurths, and E. Hernandez-Garcia, “ Interaction network based early warning indicators for the Atlantic MOC collapse,” Geophys. Res. Lett. 40, 27142719, doi:10.1002/grl.50515 (2013).
http://dx.doi.org/10.1002/grl.50515
97.
97. Q. Y. Feng, J. P. Viebahn, and H. A. Dijkstra, “ Deep ocean early warning signals of an Atlantic MOC collapse,” Geophys. Res. Lett. 41, 60096015, doi:10.1002/2014GL061019 (2014).
http://dx.doi.org/10.1002/2014GL061019
98.
98. E. Hawkins, R. S. Smith, L. C. Allison, J. M. Gregory, T. J. Woollings, H. Pohlmann, and B. de Cuevas, “ Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport,” Geophys. Res. Lett. 38, L10605, doi:10.1029/2011GL047208 (2011).
http://dx.doi.org/10.1029/2011GL047208
99.
99. T. M. Lenton, H. Held, E. Kriegler, J. W. Hall, W. Lucht, S. Rahmstorf, and H. J. Schellnhuber, “ Tipping elements in the Earth's climate system,” Proc. Natl. Acad. Sci. U.S.A. 105, 17861793 (2008).
http://dx.doi.org/10.1073/pnas.0705414105
100.
100. F. O. Bryan, “ High-latitude salinity effects and interhemispheric thermohaline circulations,” Nature 323, 301304 (1986).
http://dx.doi.org/10.1038/323301a0
101.
101. S. Rahmstorf, “ The thermohaline circulation: a system with dangerous thresholds?,” Clim. Change 46, 247256 (2000).
http://dx.doi.org/10.1023/A:1005648404783
102.
102. K. Rehfeld, N. Marwan, S. F. M. Breitenbach, and J. Kurths, “ Late Holocene Asian Summer Monsoon dynamics from small but complex networks of palaeoclimate data,” Clim. Dyn. 41, 319 (2013).
http://dx.doi.org/10.1007/s00382-012-1448-3
103.
103. A. Gozolchiani, K. Yamasaki, O. Gazit, and S. Havlin, “ Pattern of climate network blinking links follows El Niño events,” Europhys. Lett. 83, 28005 (2008).
http://dx.doi.org/10.1209/0295-5075/83/28005
104.
104. N. Malik, B. Bookhagen, N. Marwan, and J. Kurths, “ Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks,” Clim. Dyn. 39, 971987 (2012).
http://dx.doi.org/10.1007/s00382-011-1156-4
105.
105. V. Stolbova, P. Martin, B. Bookhagen, N. Marwan, and J. Kurths, “ Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka,” Nonlinear Proc. Geophys. 21, 901917 (2014).
http://dx.doi.org/10.5194/npg-21-901-2014
106.
106. L. Tupikina, K. Rehfeld, N. Molkenthin, V. Stolbova, N. Marwan, and J. Kurths, “ Characterizing the evolution of climate networks,” Nonlinear Proc. Geophys. 21, 705711 (2014).
http://dx.doi.org/10.5194/npg-21-705-2014
107.
107. G. J. Huffman, D. T. Bolvin, E. J. Nelkin, D. B. Wolff, R. F. Adler, G. Gu, Y. Hong, K. P. Bowman, and E. F. Stocker, “ The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales,” J. Hydrometeorol. 8, 3855 (2007).
http://dx.doi.org/10.1175/JHM560.1
108.
108.TRMM, “ TRMM data set,” 2012, Online, http://disc.sci.gsfc.nasa.gov/precipitation/documentation/ (accessed February 25, 2014).
109.
109. R. Quian Quiroga, T. Kreuz, and P. Grassberger, “ Event synchronization: A simple and fast method to measure synchronicity and time delay patterns,” Phys. Rev. E 66, 041904 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.041904
110.
110. N. Boers, A. Rheinwalt, B. Bookhagen, H. M. Barbosa, N. Marwan, J. Marengo, and J. Kurths, “ The South American rainfall dipole: A complex network analysis of extreme events,” Geophys. Res. Lett. 41, 73977405, doi:10.1002/2014GL061829 (2014).
http://dx.doi.org/10.1002/2014GL061829
111.
111. R. Kistler, E. Kalnay, W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah, W. Ebisuzaki, M. Kanamitsu, V. Kousky, H. V. D. Dool, R. Jenne, and M. Fiorino, “ The NCEP–NCAR 50–year reanalysis: Monthly means CD–ROM and documentation,” Bull. Am. Meteorol. Soc. 82, 247268 (2001).
http://dx.doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
112.
112. P. Holme and J. Saramäki, “ Temporal networks,” Phys. Rep. 519, 97125 (2012).
http://dx.doi.org/10.1016/j.physrep.2012.03.001
113.
113. Y. Berezin, A. Gozolchiani, O. Guez, and S. Havlin, “ Stability of climate networks with time,” Sci. Rep. 2, 666 (2012).
http://dx.doi.org/10.1038/srep00666
114.
114. J.-S. Kug, S.-I. Choi, J. A. An, F.-F. Jin, and A. T. Wittenberg, “ Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM,” J. Clim. 23, 12261239 (2010).
http://dx.doi.org/10.1175/2009JCLI3293.1
115.
115. A. Feng, Z. Gong, Q. Wang, and G. Feng, “ Three-dimensional air–sea interactions investigated with bilayer networks,” Theor. Appl. Climatol. 109, 635643 (2012).
http://dx.doi.org/10.1007/s00704-012-0600-7
116.
116. N. A. Rayner, D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, “ Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century,” J. Geophys. Res. 108, 4407, doi:10.1029/2002JD002670 (2003).
http://dx.doi.org/10.1029/2002JD002670
117.
117. S. M. Uppala, P. W. Kållberg, A. J. Simmons, U. Andrae, V. D. C. Bechtold, M. Fiorino, J. K. Gibson, J. Haseler, A. Hernandez, G. A. Kelly, X. Li, K. Onogi, S. Saarinen, N. Sokka, R. P. Allan, E. Andersson, K. Arpe, M. A. Balmaseda, A. C. M. Beljaars, L. V. D. Berg, J. Bidlot, N. Bormann, S. Caires, F. Chevallier, A. Dethof, M. Dragosavac, M. Fisher, M. Fuentes, S. Hagemann, E. Hólm, B. J. Hoskins, L. Isaksen, P. A. E. M. Janssen, R. Jenne, A. P. Mcnally, J.-F. Mahfouf, J.-J. Morcrette, N. A. Rayner, R. W. Saunders, P. Simon, A. Sterl, K. E. Trenberth, A. Untch, D. Vasiljevic, P. Viterbo, and J. Woollen, “ The ERA-40 re-analysis,” Q. J. R. Meteorol. Soc. 131, 29613012 (2005).
http://dx.doi.org/10.1256/qj.04.176
118.
118. E. Ravasz and A.-L. Barabási, “ Hierarchical organization in complex networks,” Phys. Rev. E 67, 026112 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.026112
119.
119. J. Dall and M. Christensen, “ Random geometric graphs,” Phys. Rev. E 66, 016121 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.016121
120.
120. R. V. Donner, J. Heitzig, J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, “ The geometry of chaotic dynamics – a complex network perspective,” Eur. Phys. J. B 84, 653672 (2011).
http://dx.doi.org/10.1140/epjb/e2011-10899-1
121.
121. L. Lacasa, B. Luque, J. Luque, and J. C. Nuno, “ The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion,” Europhys. Lett. 86, 30001 (2009).
http://dx.doi.org/10.1209/0295-5075/86/30001
122.
122. N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, “ Recurrence plots for the analysis of complex systems,” Phys. Rep. 438, 237329 (2007).
http://dx.doi.org/10.1016/j.physrep.2006.11.001
123.
123. N. Marwan and J. Kurths, “ Complex network based techniques to identify extreme events and (sudden) transitions in spatio-temporal systems,” Chaos 25, 097609 (2015).
http://dx.doi.org/10.1063/1.4916924
124.
124. M. C. Romano, M. Thiel, J. Kurths, and C. Grebogi, “ Estimation of the direction of the coupling by conditional probabilities of recurrence,” Phys. Rev. E 76, 036211 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.036211
125.
125. Y. Zou, M. C. Romano, M. Thiel, N. Marwan, and J. Kurths, “ Inferring indirect coupling by means of recurrences,” Int. J. Bifurcation Chaos 21, 10991111 (2011).
http://dx.doi.org/10.1142/S0218127411029033
126.
126. N. Marwan, “ A historical review of recurrence plots,” Eur. Phys. J. ST 164, 312 (2008).
http://dx.doi.org/10.1140/epjst/e2008-00829-1
127.
127. G. M. Ramírez Ávila, A. Gapelyuk, N. Marwan, H. Stepan, J. Kurths, T. Walther, and N. Wessel, “ Classifying healthy women and preeclamptic patients from cardiovascular data using recurrence and complex network methods,” Auton. Neusci. 178, 103110 (2013).
http://dx.doi.org/10.1016/j.autneu.2013.05.003
128.
128. J. F. Donges, R. V. Donner, N. Marwan, S. F. Breitenbach, K. Rehfeld, and J. Kurths, “ Non-linear regime shifts in Holocene Asian monsoon variability: Potential impacts on cultural change and migratory patterns,” Clim. Past 11, 709741 (2015).
http://dx.doi.org/10.5194/cp-11-709-2015
129.
129. N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, “ Geometry from a time series,” Phys. Rev. Lett. 45, 712716 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.712
130.
130. E. N. Lorenz, “ Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130141 (1963).
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
131.
131. S. Schinkel, N. Marwan, O. Dimigen, and J. Kurths, “ Confidence bounds of recurrence-based complexity measures,” Phys. Lett. A 373, 22452250 (2009).
http://dx.doi.org/10.1016/j.physleta.2009.04.045
132.
132. Y. Zou, R. V. Donner, J. F. Donges, N. Marwan, and J. Kurths, “ Identifying complex periodic windows in continuous-time dynamical systems using recurrence-based methods,” Chaos 20, 043130 (2010).
http://dx.doi.org/10.1063/1.3523304
133.
133. J. H. Feldhoff, R. V. Donner, J. F. Donges, N. Marwan, and J. Kurths, “ Geometric signature of complex synchronisation scenarios,” Europhys. Lett. 102, 30007 (2013).
http://dx.doi.org/10.1209/0295-5075/102/30007
134.
134. J. F. Donges, R. V. Donner, K. Rehfeld, N. Marwan, M. H. Trauth, and J. Kurths, “ Identification of dynamical transitions in marine palaeoclimate records by recurrence network analysis,” Nonlinear Processes Geophys. 18, 545562 (2011).
http://dx.doi.org/10.5194/npg-18-545-2011
135.
135. J. Rockström, W. Steffen, K. Noone, A. Persson, F. S. Chapin III, E. F. Lambin, T. M. Lenton, M. Scheffer, C. Folke, H. J. Schellnhuber, B. Nykvist, C. A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sorlin, P. K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R. W. Corell, V. J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, and J. A. Foley, “ A safe operating space for humanity,” Nature 461, 472475 (2009).
http://dx.doi.org/10.1038/461472a
136.
136. J. F. Donges, R. V. Donner, M. H. Trauth, N. Marwan, H.-J. Schellnhuber, and J. Kurths, “ Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution,” Proc. Natl. Acad. Sci. U.S.A. 108, 2042220427 (2011).
http://dx.doi.org/10.1073/pnas.1117052108
137.
137. N. Marwan, M. H. Trauth, M. Vuille, and J. Kurths, “ Comparing modern and Pleistocene ENSO-like influences in NW Argentina using nonlinear time series analysis methods,” Clim. Dyn. 21, 317326 (2003).
http://dx.doi.org/10.1007/s00382-003-0335-3
138.
138. T. D. Herbert, L. C. Peterson, K. T. Lawrence, and Z. Liu, “ Tropical ocean temperatures over the past 3.5 million years,” Science 328, 15301534 (2010).
http://dx.doi.org/10.1126/science.1185435
139.
139. D. J. Kennett, S. F. M. Breitenbach, V. V. Aquino, Y. Asmerom, J. Awe, J. U. L. Baldini, P. Bartlein, B. J. Culleton, C. Ebert, C. Jazwa, M. J. Macri, N. Marwan, V. Polyak, K. M. Prufer, H. E. Ridley, H. Sodemann, B. Winterhalder, and G. H. Haug, “ Development and disintegration of Maya political systems in response to climate change,” Science 338, 788791 (2012).
http://dx.doi.org/10.1126/science.1226299
140.
140. T. D. Herbert, “ Review of alkenone calibrations (culture, water column, and sediments),” Geochem. Geophys. Geosyst. 2, 2000GC000055, doi:10.1029/2000GC000055 (2001).
http://dx.doi.org/10.1029/2000GC000055
141.
141. L. Li, Q. Li, J. Tian, P. Wang, H. Wang, and Z. Liu, “ A 4-Ma record of thermal evolution in the tropical western Pacific and its implications on climate change,” Earth Planet. Sci. Lett. 309, 1020 (2011).
http://dx.doi.org/10.1016/j.epsl.2011.04.016
142.
142. M. B. Kennel, R. Brown, and H. D. I. Abarbanel, “ Determining embedding dimension for phase-space reconstruction using a geometrical construction,” Phys. Rev. A 45, 34033411 (1992).
http://dx.doi.org/10.1103/PhysRevA.45.3403
143.
143. G. H. Haug and R. Tiedemann, “ Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation,” Nature 393, 673676 (1998).
http://dx.doi.org/10.1038/31447
144.
144. M. Medina-Elizalde and D. W. Lea, “ The mid-Pleistocene transition in the tropical Pacific,” Science 310, 10091012 (2005).
http://dx.doi.org/10.1126/science.1115933
145.
145. Z. An, Y. Sun, W. Zhou, W. Liu, X. Qiang, X. Wang, F. Xian, P. Cheng, and G. S. Burr, “ Chinese loess and the East Asian Monsoon,” in Late Cenozoic Climate Change in Asia, Developments in Paleoenvironmental Research Vol. 16, edited by Z. An ( Springer Netherlands, Dordrecht, 2014), pp. 23143.
146.
146. C. Karas, D. Nürnberg, A. K. Gupta, R. Tiedemann, K. Mohan, and T. Bickert, “ Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow,” Nat. Geosci. 2, 434438 (2009).
http://dx.doi.org/10.1038/ngeo520
147.
147. Y. Sun, Z. An, S. C. Clemens, J. Bloemendal, and J. Vandenberghe, “ Seven million years of wind and precipitation variability on the Chinese Loess plateau,” Earth Planet. Sci. Lett. 297, 525535 (2010).
http://dx.doi.org/10.1016/j.epsl.2010.07.004
148.
148. B. Luque, L. Lacasa, F. Ballesteros, and J. Luque, “ Horizontal visibility graphs: Exact results for random time series,” Phys. Rev. E 80, 046103 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.046103
149.
149. Y. Zou, J. Heitzig, R. V. Donner, J. F. Donges, J. D. Farmer, R. Meucci, S. Euzzor, N. Marwan, and J. Kurths, “ Power-laws in recurrence networks from dynamical systems,” Europhys. Lett. 98, 48001 (2012).
http://dx.doi.org/10.1209/0295-5075/98/48001
150.
150. X.-H. Ni, Z.-Q. Jiang, and W.-X. Zhou, “ Degree distributions of the visibility graphs mapped from fractional Brownian motions and multifractal random walks,” Phys. Lett. A 373, 38223826 (2009).
http://dx.doi.org/10.1016/j.physleta.2009.08.041
151.
151. L. Lacasa, A. Nuñez, E. Roldán, J. M. R. Parrondo, and B. Luque, “ Time series irreversibility: A visibility graph approach,” Eur. Phys. J. B 85, 217 (2012).
http://dx.doi.org/10.1140/epjb/e2012-20809-8
152.
152. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “ Testing for nonlinearity in time series: the method of surrogate data,” Physica D 58, 7794 (1992).
http://dx.doi.org/10.1016/0167-2789(92)90102-S
153.
153. P. M. Grootes and M. Stuiver, “ Oxygen 18/16 variability in Greenland snow and ice with 10–3- to 105-year time resolution,” J. Geophys. Res. 102, 2645526470, doi:10.1029/97JC00880 (1997).
http://dx.doi.org/10.1029/97JC00880
154.
154. C.-F. Schleussner, D. Divine, J. F. Donges, A. Miettinen, and R. Donner, “ Indications for a North Atlantic ocean circulation regime shift at the onset of the Little Ice Age,” Clim. Dyn. (published online 2015).
http://dx.doi.org/10.1007/s00382-015-2561-x
155.
155. T. Schreiber and A. Schmitz, “ Surrogate time series,” Physica D 142, 346382 (2000).
http://dx.doi.org/10.1016/S0167-2789(00)00043-9
156.
156. M. Thiel, M. C. Romano, J. Kurths, M. Rolfs, and R. Kliegl, “ Twin surrogates to test for complex synchronisation,” Europhys. Lett. 75, 535 (2006).
http://dx.doi.org/10.1209/epl/i2006-10147-0
157.
157. M. Paluš, D. Hartman, J. Hlinka, and M. Vejmelka, “ Discerning connectivity from dynamics in climate networks,” Nonlinear Processes Geophys. 18, 751763 (2011).
http://dx.doi.org/10.5194/npg-18-751-2011
http://aip.metastore.ingenta.com/content/aip/journal/chaos/25/11/10.1063/1.4934554
Loading
/content/aip/journal/chaos/25/11/10.1063/1.4934554
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/25/11/10.1063/1.4934554
2015-11-04
2016-05-26

Abstract

We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/25/11/1.4934554.html;jsessionid=DqGrnnMyrPJuwzhcfnahlKLt.x-aip-live-06?itemId=/content/aip/journal/chaos/25/11/10.1063/1.4934554&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/25/11/10.1063/1.4934554&pageURL=http://scitation.aip.org/content/aip/journal/chaos/25/11/10.1063/1.4934554'
Right1,Right2,Right3,