Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/25/12/10.1063/1.4937364
1.
1. D. Schertzer and S. Lovejoy, “ On the dimension of atmospheric motions,” in 6th Symposium Turbulence and Diffusion, edited by T. Tatsumi ( Elsevier Science Publishers B. V., Amsterdam, 1983), Vol. 5, pp. 6972.
2.
2. R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, “ On the multifractal nature of fully developed turbulence,” J. Phys. A 17, 35213531 (1984).
http://dx.doi.org/10.1088/0305-4470/17/18/021
3.
3. G. Parisi and U. Frisch, “ On the singularity structure of fully developed turbulence,” in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, edited by M. Ghil, R. Benzi, and G. Parisi ( North Holland, Amsterdam, 1985), pp. 8488.
4.
4. T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. Shraiman, “ Fractal measures and their singularities: The characterization of strange sets,” Phys. Rev. A 33, 11411151 (1986).
http://dx.doi.org/10.1103/PhysRevA.33.1141
5.
5. B. B. Mandelbrot, “ Random multifractals negative dimensions and the resulting limitations of the thermodynamic formalism,” Proc. R. Soc. London A 434, 7988 (1991).
http://dx.doi.org/10.1098/rspa.1991.0081
6.
6. P. Brax and R. Pechanski, “ Levy stable law description on intermittent behaviour and quark-gluon phase transitions,” Phys. Lett. B 253, 225230 (1991).
http://dx.doi.org/10.1016/0370-2693(91)91388-C
7.
7. S. P. Ratti, G. Salvadori, G. Gianini, S. Lovejoy, and D. Schertzer, “ A universal multifractal approach to intermittency in high energy physics,” Z. Phys. C 61, 229237 (1994).
http://dx.doi.org/10.1007/BF01413100
8.
8. K. Fraedrich and R. Blender, “ Scaling of atmosphere and ocean temperature correlations in observations and climate models,” Phys. Rev. Lett. 90, 108501 (2003);
http://dx.doi.org/10.1103/PhysRevLett.90.108501
8. K. Fraedrich and R. Blender, e-print arXiv:0305080 [physics].
9.
9. J. F. Royer, Biaou, F. Chauvin, D. Schertzer, and S. Lovejoy, “ Multifractal analysis of the evolution of simulated precipitation over France in a climate scenario,” C. R. Geosci. 340, 431 (2008).
http://dx.doi.org/10.1016/j.crte.2008.05.002
10.
10. I. Bordi, K. Fraedrich, and A. Sutera, “ Northern Hemisphere climate trends in reanalysis and forecast model predictions: The 500 hPa annual means,” Geophys. Res. Lett. 37, 14, doi:10.1029/2010GL043217 (2010).
http://dx.doi.org/10.1029/2010GL043217
11.
11. S. Lovejoy and D. Schertzer, The Weather and Climate: Emergent Laws and Multifractal Cascades ( Cambridge University Press, Cambridge, U.K., 2013), p. 475.
12.
12. S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, Y. Dodge, and Ganshghaie, “ Turbulent cascades in foreign exchange markets,” Nature 381, 767770 (1996).
http://dx.doi.org/10.1038/381767a0
13.
13. F. Schmitt, D. Schertzer, and S. Lovejoy, “ Multifractal fluctuations in finance,” Int. J. Theor. Appl. Finance 3, 361364 (2000).
http://dx.doi.org/10.1142/S0219024900000206
14.
14. F. S. Labini and L. Pietronero, “ Statistical properties of galaxy distributions,” Nonlinear Processes Geophys. 3, 274283 (1996).
http://dx.doi.org/10.5194/npg-3-274-1996
15.
15. P. Garrido, S. Lovejoy, and D. Schertzer, “ Multifractal processes and self-organized-criticality in the large-scale structure of the universe,” Physica A 225, 294311 (1996).
http://dx.doi.org/10.1016/0378-4371(95)00332-0
16.
16. H. Weyl, Symmetry ( Princeton University Press, Princeton, NJ, 1952).
17.
17. A. Zee, Fearful Symmetry: The Search for beauty in Modern Physics ( Colliers Books, Macmillan Publishing Company, New-York, 1986).
18.
18. L. Sedov, Similitudes et Dimensions en Mécanique ( MIR, Moscow, 1972).
19.
19. E. Buckingham, “ Physically similar systems: Illustrations of the use of dimensional equations,” Phys Rev. 4, 345376 (1914).
http://dx.doi.org/10.1103/PhysRev.4.345
20.
20. E. Buckingham, “ The principle of similitude,” Nature 96, 396397 (1915).
http://dx.doi.org/10.1038/096396d0
21.
21. A. A. Sonin, “ A generalization of P-theorem and dimensional analysis,” Proc. Natl. Acad. Sci. 101, 8525 (2004).
http://dx.doi.org/10.1073/pnas.0402931101
22.
22. M. L. Kavvas and A. Karakas, “ On the stochastic theory of solute transport by unsteady and steady groundwater flow in heterogeneous aquifers,” J. Hydrol. 179, 321351 (1996).
http://dx.doi.org/10.1016/0022-1694(95)02835-8
23.
23. M. Cayar and M. L. Kavvas, “ Symmetry in nonlinear hydrologic dynamics under uncertainty: Ensemble modeling of 2D Boussinesq equation for unsteady flow in heterogeneous aquifers,” J. Hydrol. Eng. 14, 11731184 (2009).
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000112
24.
24. I. Haltas and M. L. Kavvas, “ Scale invariance and self-similarity in kinematic wave overland flow in space and time,” Hydrol. Processes 25, 36593665 (2011).
http://dx.doi.org/10.1002/hyp.8092
25.
25. J. Peinke, R. Friedrich, and A. Naert, “ A new approach to characterize disordered structures,” Z. Naturforsch. A 52, 588592 (1997).
http://dx.doi.org/10.1515/zna-1997-8-907
26.
26. R. Friedrich and J. Peinke, “ Description of a turbulent cascade by a Fokker-Planck equation,” Phys. Rev. Lett. 78, 863866 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.863
27.
27. R. Friedrich, J. Peinke, M. Sahimi, and M. R. R. Tabar, “ Approaching complexity by stochastic methods: From biological systems to turbulence,” Phys. Rep. 506, 87162 (2011).
http://dx.doi.org/10.1016/j.physrep.2011.05.003
28.
28. D. Schertzer and S. Lovejoy, “ Generalised scale invariance in turbulent phenomena,” Physico-Chemical Hydrodynamics J. 6, 623635 (1985).
29.
29. D. Schertzer and S. Lovejoy, “ Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes,” J. Geophys. Res. D 8, 96939714, doi:10.1029/JD092iD08p09693 (1987).
http://dx.doi.org/10.1029/JD092iD08p09693
30.
30. D. Schertzer and S. Lovejoy, “ Universal multifractals do exist!,” J. Appl. Meteorol. 36, 12961303 (1997).
http://dx.doi.org/10.1175/1520-0450(1997)036<1296:UMDECO>2.0.CO;2
31.
31. H. Hagen and G. Scheuermann, “ Clifford algebra and flows,” Mathematical Methods for Curves and Surfaces ( Springer, 2001), p. 173.
32.
32. H. Kunita, Stochastic Flows and Stochastic Differential Equations ( Cambridge University Press, Cambridge, 1990).
33.
33. D. Applebaum and H. Kunita, “ Lévy flows on manifolds and Lévy processes on lie group,” J. Math. Kyoto Univ. 33, 11031123 (1993).
34.
34. B. B. Mandelbrot, The Fractal Geometry of Nature ( Freeman, San Francisco, 1983).
35.
35. D. Schertzer and S. Lovejoy, “ The dimension and intermittency of atmospheric dynamics,” in Turbulent Shear Flow 4, edited by B. Launder ( Springer-Verlag, 1985), pp. 733.
36.
36. Y. Chigirinskaya, D. Schertzer, S. Lovejoy, A. Lazarev, and A. Ordanovich, “ Unified multifractal atmospheric dynamics tested in the tropics, part I: horizontal scaling and self organized criticality,” Nonlinear Processes Geophys. 1, 105114 (1994).
http://dx.doi.org/10.5194/npg-1-105-1994
37.
37. A. Lazarev, D. Schertzer, S. Lovejoy, and Y. Chigirinskaya, “ Unified multifractal atmospheric dynamics tested in the tropics: part II, vertical scaling and Generalized Scale Invariance,” Nonlinear Processes Geophys. 1, 115123 (1994).
http://dx.doi.org/10.5194/npg-1-115-1994
38.
38. M. Lilley, S. Lovejoy, K. Strawbridge, and D. Schertzer, “ 23/9 dimensional anisotropic scaling of passive admixtures using lidar data of aerosols,” Phys. Rev. E 70, 36307 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.036307
39.
39. A. Radkevich, S. Lovejoy, K. Strawbridge, and D. Schertzer, “ The elliptical dimension of space-time atmospheric stratification of passive admixtures using lidar data,” Physica A 382, 597615 (2007).
http://dx.doi.org/10.1016/j.physa.2007.03.046
40.
40. S. Lovejoy, A. F. Tuck, D. Schertzer, and S. J. Hovde, “ Reinterpreting aircraft measurements in anisotropic scaling turbulence,” Atmos. Chem. Phys. 9, 50075025 (2009).
http://dx.doi.org/10.5194/acp-9-5007-2009
41.
41. D. Schertzer, I. Tchiguirinskaia, S. Lovejoy, and A. F. Tuck, “ Quasi-geostrophic turbulence and generalized scale invariance, a theoretical reply,” Atmos. Chem. Phys. 12, 327336 (2012).
http://dx.doi.org/10.5194/acp-12-327-2012
42.
42. D. Schertzer, M. Larcheveque, J. Duan, and S. Lovejoy, “ Generalized stable multivariate distribution and anisotropic dilations,” IMA preprint, Minnesota U. 2, 111 (1999); e-print arXiv:9912016 [chao-dyn].
43.
43. B. Mandelbrot, “ Self-affine fractal sets, I: The basic fractal dimensions,” in Fractals in Physics, edited by L. Pietronero and E. Tosatti ( North-Holland, Amsterdam, 1985), pp. 316.
44.
44. J. H. Shapiro, Composition Operators and Classical Function Theory ( Springer-Verlag, New York, 1993).
45.
45. J. Lamperti, “ Semi-stable stochastic processes,” Trans. Am. Math. Soc. 104, 6278 (1962).
http://dx.doi.org/10.1090/S0002-9947-1962-0138128-7
46.
46. H. E. Hurst, “ Long-term storage capacity of reservoirs,” Trans. Am. Soc. Civil Eng. 116, 770808 (1951).
47.
47. V. Klemes, “ The Hurst phenomenon: A puzzle?,” Water Resour. Res. 10, 657688 (1974).
48.
48. B. B. Mandelbrot and J. W. Van Ness, “ Fractional Brownian motions, fractional noises and applications,” SIAM Rev. 10, 422450 (1968).
http://dx.doi.org/10.1137/1010093
49.
49. P. Lévy, Théorie de l'addition des variables aléatoires ( Gauthiers Villars, Paris, 1937).
50.
50. B. V. Gnedenko and A. N. Kolmogorov, Limit Distribution for Sums of Independent Random Variables ( Addison-Wesley, 1954).
51.
51. W. Feller, An Introduction to Probability Theory and its Applications ( Wiley, New York, 1971), Vol. 2.
52.
52. V. Zolotarev, One-Dimensional Stable Distributions ( American Mathematical Society, Providence RI, 1986).
53.
53. A. H. Fan, “ Chaos additif et multiplicatif de Levy,” C. R. Acad. Sci. Paris Seie 308(5), 151154 (1989).
54.
54. M. Metivier, Semimartingales: A Course on Stochastic Processes ( Walter de Gruyter, Berlin, New York, 1982), p. 287.
55.
55. D. Schertzer, S. Lovejoy, F. Schmitt, I. Tchiguirinskaia, and D. Marsan, “ Multifractal cascade dynamics and turbulent intermittency,” Fractals 5, 427471 (1997).
http://dx.doi.org/10.1142/S0218348X97000371
56.
56. H.-W. Cheng and S. S. Yau, “ More explicit formulas for the matrix exponential,” Linear Algebra Its Appl. 262, 131163 (1997).
http://dx.doi.org/10.1016/S0024-3795(96)00478-8
57.
57. D. H. Sattinger and O. L. Weaver, Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics ( Springer-Verlag, New-York, Berlin, 1986).
58.
58. Gilmore, Lie Groups ( Wiley, New York, 1941).
59.
59. D. Schertzer and S. Lovejoy, “ Multifractal simulations and analysis of clouds by multiplicative processes,” Atmos. Res. 21, 337361 (1988).
http://dx.doi.org/10.1016/0169-8095(88)90035-X
60.
60. D. Schertzer and S. Lovejoy, “ Nonlinear variability in geophysics: Multifractal analysis and simulation,” in Fractals: Physical Origin and Consequences, edited by L. Pietronero ( Plenum, New-York, 1989), p. 49.
61.
61. J. Kocik, “ Clifford algebras and Euclid's parametrization of pythagorean triples,” Adv. Appl. Clifford Algebras 17, 7193 (2007).
http://dx.doi.org/10.1007/s00006-006-0019-2
62.
62. D. Schertzer and S. Lovejoy, “ From scalar cascades to Lie cascades: Joint multifractal analysis of rain and cloud processes,” in Space/time Variability and Interdependance for Various Hydrological Processes, edited by R. A. Feddes ( Cambridge University Press, Cambridge, UK, 1995), pp. 153173.
63.
63. J. Weiss, “ The dynamic of enstrophy transfer in two-dimensional hydrodynamics,” Physica D 48, 273294 (1991).
http://dx.doi.org/10.1016/0167-2789(91)90088-Q
64.
64. W. E. Baylis, “ Applications of Clifford Algebras in Physics,” in Lectures on Clifford (Geometric) Algebras and Applications, edited by R. Ablamowicz and G. Sobczyk ( Springer, 2004), pp. 91133.
65.
65. P. Anglès, “ The structure of the Clifford algebra,” Adv. Appl. Clifford Algebras 19, 585610 (2009).
http://dx.doi.org/10.1007/s00006-009-0185-0
66.
66. A. Hurwitz, “ Über die Komposition der quadratischen Formen,” Math. Ann. 88, 125 (1922).
http://dx.doi.org/10.1007/BF01448439
67.
67. J. B. Kuipers, Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality ( Princeton University Press, 1999).
68.
68. J. Ebling and G. Scheuermann, “ Clifford Fourier transform on vector fields,” IEEE Trans. Visualization Comput. Graphics 11, 469479 (2005).
http://dx.doi.org/10.1109/TVCG.2005.54
69.
69. E. M. S. Hitzer and B. Mawardi, “ Clifford Fourier transform on multivector fields and uncertainty principles for dimensions n = 2 (mod 4) and n = 3 (mod 4),” Adv. Appl. Clifford Algebras 18, 715736 (2008).
http://dx.doi.org/10.1007/s00006-008-0098-3
70.
70. V. J. Paulauskas, “ Some remarks on Multivariate Stable Distributions,” J. Multivar. Anal. 6, 356368 (1976).
http://dx.doi.org/10.1016/0047-259X(76)90045-2
71.
71. C. L. Nikias and M. Shao, Signal Processing with Alpha-Stable Distributions and Applications ( John Wiley and Sons, New-York, 1995).
72.
72. J. Kallsen and P. Tankov, “ Characterization of dependence of multidimensional Levy processes using Levy copulas,” J. Multivar. Anal. 97, 15511572 (2006).
http://dx.doi.org/10.1016/j.jmva.2005.11.001
http://aip.metastore.ingenta.com/content/aip/journal/chaos/25/12/10.1063/1.4937364
Loading
/content/aip/journal/chaos/25/12/10.1063/1.4937364
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/25/12/10.1063/1.4937364
2015-12-31
2016-12-09

Abstract

In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifoldstructure of symmetry groups while the Lévy stability grants a given statistical universality.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/25/12/1.4937364.html;jsessionid=rtVdWj-iMl8f0P136M-16HJw.x-aip-live-03?itemId=/content/aip/journal/chaos/25/12/10.1063/1.4937364&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/25/12/10.1063/1.4937364&pageURL=http://scitation.aip.org/content/aip/journal/chaos/25/12/10.1063/1.4937364'
Right1,Right2,Right3,