Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/25/12/10.1063/1.4937451
1.
1. D. S. Bassett, N. F. Wymbs, M. A. Porter, P. J. Mucha, J. M. Carlson, and S. T. Grafton, “ Dynamic reconfiguration of human brain networks during learning,” Proc. Natl. Acad. Sci. U.S.A. 108, 76417646 (2011).
http://dx.doi.org/10.1073/pnas.1018985108
2.
2. F. de Pasquale, S. Della Penna, A. Z. Snyder, C. Lewis, D. Mantini, L. Marzetti, P. Belardinelli, L. Ciancetta, V. Pizzella, G. L. Romani, and M. Corbetta, “ Temporal dynamics of spontaneous meg activity in brain networks,” Proc. Natl. Acad. Sci. U.S.A. 107, 60406045 (2010).
http://dx.doi.org/10.1073/pnas.0913863107
3.
3. A. Cimenser, P. L. Purdon, E. T. Pierce, J. L. Walsh, A. F. Salazar-Gomez, P. G. Harrell, C. Tavares-Stoeckel, K. Habeeb, and E. N. Brown, “ Tracking brain states under general anesthesia by using global coherence analysis,” Proc. Natl. Acad. Sci. U.S.A. 108, 88328837 (2011).
http://dx.doi.org/10.1073/pnas.1017041108
4.
4. P. Lin, Y. Yang, J. Jovicich, N. De Pisapia, X. Wang, C. S. Zuo, and J. J. Levitt, “ Static and dynamic posterior cingulate cortex nodal topology of default mode network predicts attention task performance,” Brain Imaging Behav. (2015), Apr 24 [Epub ahead of print].
5.
5. E. A. Allen, E. Damaraju, S. M. Plis, E. B. Erhardt, T. Eichele, and V. D. Calhoun, “ Tracking whole-brain connectivity dynamics in the resting state,” Cereb. Cortex 24, 663676 (2014).
http://dx.doi.org/10.1093/cercor/bhs352
6.
6. A. Baldassarre, C. M. Lewis, G. Committeri, A. Z. Snyder, G. L. Romani, and M. Corbetta, “ Individual variability in functional connectivity predicts performance of a perceptual task,” Proc. Natl. Acad. Sci. U.S.A. 109, 35163521 (2012).
http://dx.doi.org/10.1073/pnas.1113148109
7.
7. W. Cai, T. Chen, S. Ryali, J. Kochalka, C. S. Li, and V. Menon, “ Causal interactions within a frontal-cingulate-parietal network during cognitive control: Convergent evidence from a multisite-multitask investigation,” Cereb. Cortex (2015), Mar 15 [Epub ahead of print].
8.
8. S. Sadaghiani, J.-B. Poline, A. Kleinschmidt, and M. D'Esposito, “ Ongoing dynamics in large-scale functional connectivity predict perception,” Proc. Natl. Acad. Sci. U.S.A. 112, 84638468 (2015).
http://dx.doi.org/10.1073/pnas.1420687112
9.
9. S. Spadone, S. Della Penna, C. Sestieri, V. Betti, A. Tosoni, M. G. Perrucci, G. L. Romani, and M. Corbetta, “ Dynamic reorganization of human resting-state networks during visuospatial attention,” Proc. Natl. Acad. Sci. U.S.A. 112, 81128117 (2015).
http://dx.doi.org/10.1073/pnas.1415439112
10.
10. B. L. Parkin, P. J. Hellyer, R. Leech, and A. Hampshire, “ Dynamic network mechanisms of relational integration,” J. Neurosci. 35, 76607673 (2015).
http://dx.doi.org/10.1523/JNEUROSCI.4956-14.2015
11.
11. P. J. Hellyer, G. Scott, M. Shanahan, D. J. Sharp, and R. Leech, “ Cognitive flexibility through metastable neural dynamics is disrupted by damage to the structural connectome,” J. Neurosci. 35, 90509063 (2015).
http://dx.doi.org/10.1523/JNEUROSCI.4648-14.2015
12.
12. P. J. Hellyer, M. Shanahan, G. Scott, R. J. Wise, D. J. Sharp, and R. Leech, “ The control of global brain dynamics: opposing actions of frontoparietal control and default mode networks on attention,” J. Neurosci. 34, 451461 (2014).
http://dx.doi.org/10.1523/JNEUROSCI.1853-13.2014
13.
13. P. Barttfeld, L. Uhrig, J. D. Sitt, M. Sigman, B. Jarraya, and S. Dehaene, “ Signature of consciousness in the dynamics of resting-state brain activity,” Proc. Natl. Acad. Sci. U.S.A. 112, 887892 (2015).
http://dx.doi.org/10.1073/pnas.1418031112
14.
14. K. W. Doron, D. S. Bassett, and M. S. Gazzaniga, “ Dynamic network structure of interhemispheric coordination,” Proc. Natl. Acad. Sci. U.S.A. 109, 1866118668 (2012).
http://dx.doi.org/10.1073/pnas.1216402109
15.
15. R. M. Hutchison, T. Womelsdorf, E. A. Allen, P. A. Bandettini, V. D. Calhoun, M. Corbetta, S. Della Penna, J. H. Duyn, G. H. Glover, J. Gonzalez-Castillo, D. A. Handwerker, S. Keilholz, V. Kiviniemi, D. A. Leopold, F. de Pasquale, O. Sporns, M. Walter, and C. Chang, “ Dynamic functional connectivity: promise, issues, and interpretations,” Neuroimage 80, 360378 (2013).
http://dx.doi.org/10.1016/j.neuroimage.2013.05.079
16.
16. E. Bullmore and O. Sporns, “ Complex brain networks: graph theoretical analysis of structural and functional systems,” Nat. Rev. Neurosci. 10, 186198 (2009).
http://dx.doi.org/10.1038/nrn2575
17.
17. Q. Yu, E. B. Erhardt, J. Sui, Y. Du, H. He, D. Hjelm, M. S. Cetin, S. Rachakonda, R. L. Miller, G. Pearlson, and V. D. Calhoun, “ Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia,” Neuroimage 107, 345355 (2015).
http://dx.doi.org/10.1016/j.neuroimage.2014.12.020
18.
18. R. Bishop, “ Chaos,” in The Stanford Encyclopedia of Philosophy, edited by E. N. Zalta ( Fall, 2009).
19.
19. E. P. Wigner, The Collected Works of Eugene Paul Wigner, edited by A. Wightman ( Springer, Berlin, Heidelberg, 1993), Vol. A/1, pp. 524540.
20.
20. T. Kottos and U. Smilansky, “ Quantum chaos on graphs,” Phys. Rev. Lett. 79, 47944797 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.4794
21.
21. V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, T. Guhr, and H. E. Stanley, “ Random matrix approach to cross correlations in financial data,” Phys. Rev. E 65, 066126 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.066126
22.
22. H. Meng, W. J. Xie, Z. Q. Jiang, B. Podobnik, W. X. Zhou, and H. E. Stanley, “ Systemic risk and spatiotemporal dynamics of the us housing market,” Sci. Rep. 4, 3655 (2014).
http://dx.doi.org/10.1038/srep03655
23.
23. V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. Nunes Amaral, and H. E. Stanley, “ Universal and nonuniversal properties of cross correlations in financial time series,” Phys. Rev. Lett. 83, 14711474 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1471
24.
24. M. S. Santhanam and P. K. Patra, “ Statistics of atmospheric correlations,” Phys. Rev. E 64, 016102 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.016102
25.
25. P. Seba, “ Random matrix analysis of human EEG data,” Phys. Rev. Lett. 91, 198104 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.198104
26.
26. I. Osorio and Y. C. Lai, “ A phase-synchronization and random-matrix based approach to multichannel time-series analysis with application to epilepsy,” Chaos 21, 033108 (2011).
http://dx.doi.org/10.1063/1.3615642
27.
27. F. Luo, Y. Yang, J. Zhong, H. Gao, L. Khan, D. K. Thompson, and J. Zhou, “ Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory,” BMC Bioinf. 8, 299 (2007).
http://dx.doi.org/10.1186/1471-2105-8-299
28.
28. S. M. Gibson, S. P. Ficklin, S. Isaacson, F. Luo, F. A. Feltus, and M. C. Smith, “ Massive-scale gene co-expression network construction and robustness testing using random matrix theory,” PLoS One 8, e55871 (2013).
http://dx.doi.org/10.1371/journal.pone.0055871
29.
29. S. Jalan and J. N. Bandyopadhyay, “ Random matrix analysis of network Laplacians,” Physica A 387, 667674 (2008).
http://dx.doi.org/10.1016/j.physa.2007.09.026
30.
30. S. Jalan and J. N. Bandyopadhyay, “ Randomness of random networks: A random matrix analysis,” Europhys. Lett. 87, 48010 (2009).
http://dx.doi.org/10.1209/0295-5075/87/48010
31.
31. J. N. Bandyopadhyay and S. Jalan, “ Universality in complex networks: Random matrix analysis,” Phys. Rev. E 76, 026109 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.026109
32.
32. D. Mulhall, “ Open quantum systems and random matrix theory,” Phys. Rev. C 91, 014305 (2015).
http://dx.doi.org/10.1103/PhysRevC.91.014305
33.
33. S. Jalan and J. Bandyopadhyay, “ Random matrix analysis of complex networks,” Phys. Rev. E 76, 046107 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.046107
34.
34. R. W. Cox, “ Afni: Software for analysis and visualization of functional magnetic resonance neuroimages,” Comput. Biomed. Res. 29, 162173 (1996).
http://dx.doi.org/10.1006/cbmr.1996.0014
35.
35. V. Menon, “ Large-scale brain networks and psychopathology: a unifying triple network model,” Trends Cognit. Sci. 15, 483506 (2011).
http://dx.doi.org/10.1016/j.tics.2011.08.003
36.
36. V. Menon and L. Q. Uddin, “ Saliency, switching, attention and control: A network model of insula function,” Brain Struct. Funct. 214, 655667 (2010).
http://dx.doi.org/10.1007/s00429-010-0262-0
37.
37. R. L. Buckner, J. R. Andrews-Hanna, and D. L. Schacter, “ The brain's default network: Anatomy, function, and relevance to disease,” Ann. N. Y. Acad. Sci. 1124, 138 (2008).
http://dx.doi.org/10.1196/annals.1440.011
38.
38. S. L. Bressler and V. Menon, “ Large-scale brain networks in cognition: Emerging methods and principles,” Trends Cognit. Sci. 14, 277290 (2010).
http://dx.doi.org/10.1016/j.tics.2010.04.004
39.
39. P. Lin, U. Hasson, J. Jovicich, and S. Robinson, “ A neuronal basis for task-negative responses in the human brain,” Cereb. Cortex 21, 821830 (2011).
http://dx.doi.org/10.1093/cercor/bhq151
40.
40. M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle, “ The human brain is intrinsically organized into dynamic, anticorrelated functional networks,” Proc. Natl. Acad. Sci. U.S.A. 102, 96739678 (2005).
http://dx.doi.org/10.1073/pnas.0504136102
41.
41. W. R. Shirer, S. Ryali, E. Rykhlevskaia, V. Menon, and M. D. Greicius, “ Decoding subject-driven cognitive states with whole-brain connectivity patterns,” Cereb. Cortex 22, 158165 (2012).
http://dx.doi.org/10.1093/cercor/bhr099
42.
42. M. Mller, G. Baier, A. Galka, U. Stephani, and H. Muhle, “ Detection and characterization of changes of the correlation structure in multivariate time series,” Phys. Rev. E 71, 046116 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.046116
43.
43. R. A. Fisher, “ Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population,” Biometrika 10, 507521 (1915).
http://dx.doi.org/10.2307/2331838
44.
44. R. A. Fisher, “ On the “probable error” of a coefficient of correlation deduced from a small sample,” Metron 1, 332 (1921); available at http://hdl.handle.net/2440/15169.
45.
45. A. Edelman and N. R. Rao, “ Random matrix theory,” Acta Numer. 14, 233297 (2005).
http://dx.doi.org/10.1017/S0962492904000236
46.
46. S. Jalan, C. Sarkar, A. Madhusudanan, and S. K. Dwivedi, “ Uncovering randomness and success in society,” PLoS One 9, e88249 (2014).
http://dx.doi.org/10.1371/journal.pone.0088249
47.
47. S. Jalan, “ Importance of randomness in biological networks: A random matrix analysis,” Pramana J. Phys. 84, 285293 (2015).
http://dx.doi.org/10.1007/s12043-015-0940-9
48.
48. D. L. Shepelyansky, in Chaotic Behavior in Quantum Systems, edited by G. Casati ( Springer, USA, 1985), Vol. 120, pp. 187204.
49.
49. W. Luo and P. Sarnak, “ Number variance for arithmetic hyperbolic surfaces,” Commun. Math. Phys. 161, 419432 (1994).
http://dx.doi.org/10.1007/BF02099785
50.
50. J. M. A. S. P. Wickramasinghe, B. Goodman, and R. A. Serota, “ Quantum jumps of saturation level rigidity and anomalous oscillations of level number variance in the semiclassical spectrum of a modified Kepler problem,” Phys. Rev. E 77, 056216 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.056216
51.
51. T. Kriecherbauer, J. Marklof, and A. Soshnikov, “ Random matrices and quantum chaos,” Proc. Natl. Acad. Sci. U.S.A. 98, 1053110532 (2001).
http://dx.doi.org/10.1073/pnas.191366198
52.
52. I. Jolliffe, Principal Component Analysis, 2nd ed., Springer Series in Statistics ( Springer, New York, 2002).
53.
53. M. C. Munnix, T. Shimada, R. Schafer, F. Leyvraz, T. H. Seligman, T. Guhr, and H. E. Stanley, “ Identifying states of a financial market,” Sci. Rep. 2, 644 (2012).
http://dx.doi.org/10.1038/srep00644
http://aip.metastore.ingenta.com/content/aip/journal/chaos/25/12/10.1063/1.4937451
Loading
/content/aip/journal/chaos/25/12/10.1063/1.4937451
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/25/12/10.1063/1.4937451
2015-12-14
2016-12-07

Abstract

The temporal evolution properties of the brainnetwork are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brainnetwork during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brainnetwork is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalueanalysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brainnetwork but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brainnetwork is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brainnetwork, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/25/12/1.4937451.html;jsessionid=R_8GJt0_aXf1UPEoVVn59r3F.x-aip-live-06?itemId=/content/aip/journal/chaos/25/12/10.1063/1.4937451&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/25/12/10.1063/1.4937451&pageURL=http://scitation.aip.org/content/aip/journal/chaos/25/12/10.1063/1.4937451'
Right1,Right2,Right3,