Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. S. Bassett, N. F. Wymbs, M. A. Porter, P. J. Mucha, J. M. Carlson, and S. T. Grafton, “ Dynamic reconfiguration of human brain networks during learning,” Proc. Natl. Acad. Sci. U.S.A. 108, 76417646 (2011).
2. F. de Pasquale, S. Della Penna, A. Z. Snyder, C. Lewis, D. Mantini, L. Marzetti, P. Belardinelli, L. Ciancetta, V. Pizzella, G. L. Romani, and M. Corbetta, “ Temporal dynamics of spontaneous meg activity in brain networks,” Proc. Natl. Acad. Sci. U.S.A. 107, 60406045 (2010).
3. A. Cimenser, P. L. Purdon, E. T. Pierce, J. L. Walsh, A. F. Salazar-Gomez, P. G. Harrell, C. Tavares-Stoeckel, K. Habeeb, and E. N. Brown, “ Tracking brain states under general anesthesia by using global coherence analysis,” Proc. Natl. Acad. Sci. U.S.A. 108, 88328837 (2011).
4. P. Lin, Y. Yang, J. Jovicich, N. De Pisapia, X. Wang, C. S. Zuo, and J. J. Levitt, “ Static and dynamic posterior cingulate cortex nodal topology of default mode network predicts attention task performance,” Brain Imaging Behav. (2015), Apr 24 [Epub ahead of print].
5. E. A. Allen, E. Damaraju, S. M. Plis, E. B. Erhardt, T. Eichele, and V. D. Calhoun, “ Tracking whole-brain connectivity dynamics in the resting state,” Cereb. Cortex 24, 663676 (2014).
6. A. Baldassarre, C. M. Lewis, G. Committeri, A. Z. Snyder, G. L. Romani, and M. Corbetta, “ Individual variability in functional connectivity predicts performance of a perceptual task,” Proc. Natl. Acad. Sci. U.S.A. 109, 35163521 (2012).
7. W. Cai, T. Chen, S. Ryali, J. Kochalka, C. S. Li, and V. Menon, “ Causal interactions within a frontal-cingulate-parietal network during cognitive control: Convergent evidence from a multisite-multitask investigation,” Cereb. Cortex (2015), Mar 15 [Epub ahead of print].
8. S. Sadaghiani, J.-B. Poline, A. Kleinschmidt, and M. D'Esposito, “ Ongoing dynamics in large-scale functional connectivity predict perception,” Proc. Natl. Acad. Sci. U.S.A. 112, 84638468 (2015).
9. S. Spadone, S. Della Penna, C. Sestieri, V. Betti, A. Tosoni, M. G. Perrucci, G. L. Romani, and M. Corbetta, “ Dynamic reorganization of human resting-state networks during visuospatial attention,” Proc. Natl. Acad. Sci. U.S.A. 112, 81128117 (2015).
10. B. L. Parkin, P. J. Hellyer, R. Leech, and A. Hampshire, “ Dynamic network mechanisms of relational integration,” J. Neurosci. 35, 76607673 (2015).
11. P. J. Hellyer, G. Scott, M. Shanahan, D. J. Sharp, and R. Leech, “ Cognitive flexibility through metastable neural dynamics is disrupted by damage to the structural connectome,” J. Neurosci. 35, 90509063 (2015).
12. P. J. Hellyer, M. Shanahan, G. Scott, R. J. Wise, D. J. Sharp, and R. Leech, “ The control of global brain dynamics: opposing actions of frontoparietal control and default mode networks on attention,” J. Neurosci. 34, 451461 (2014).
13. P. Barttfeld, L. Uhrig, J. D. Sitt, M. Sigman, B. Jarraya, and S. Dehaene, “ Signature of consciousness in the dynamics of resting-state brain activity,” Proc. Natl. Acad. Sci. U.S.A. 112, 887892 (2015).
14. K. W. Doron, D. S. Bassett, and M. S. Gazzaniga, “ Dynamic network structure of interhemispheric coordination,” Proc. Natl. Acad. Sci. U.S.A. 109, 1866118668 (2012).
15. R. M. Hutchison, T. Womelsdorf, E. A. Allen, P. A. Bandettini, V. D. Calhoun, M. Corbetta, S. Della Penna, J. H. Duyn, G. H. Glover, J. Gonzalez-Castillo, D. A. Handwerker, S. Keilholz, V. Kiviniemi, D. A. Leopold, F. de Pasquale, O. Sporns, M. Walter, and C. Chang, “ Dynamic functional connectivity: promise, issues, and interpretations,” Neuroimage 80, 360378 (2013).
16. E. Bullmore and O. Sporns, “ Complex brain networks: graph theoretical analysis of structural and functional systems,” Nat. Rev. Neurosci. 10, 186198 (2009).
17. Q. Yu, E. B. Erhardt, J. Sui, Y. Du, H. He, D. Hjelm, M. S. Cetin, S. Rachakonda, R. L. Miller, G. Pearlson, and V. D. Calhoun, “ Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia,” Neuroimage 107, 345355 (2015).
18. R. Bishop, “ Chaos,” in The Stanford Encyclopedia of Philosophy, edited by E. N. Zalta ( Fall, 2009).
19. E. P. Wigner, The Collected Works of Eugene Paul Wigner, edited by A. Wightman ( Springer, Berlin, Heidelberg, 1993), Vol. A/1, pp. 524540.
20. T. Kottos and U. Smilansky, “ Quantum chaos on graphs,” Phys. Rev. Lett. 79, 47944797 (1997).
21. V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, T. Guhr, and H. E. Stanley, “ Random matrix approach to cross correlations in financial data,” Phys. Rev. E 65, 066126 (2002).
22. H. Meng, W. J. Xie, Z. Q. Jiang, B. Podobnik, W. X. Zhou, and H. E. Stanley, “ Systemic risk and spatiotemporal dynamics of the us housing market,” Sci. Rep. 4, 3655 (2014).
23. V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. Nunes Amaral, and H. E. Stanley, “ Universal and nonuniversal properties of cross correlations in financial time series,” Phys. Rev. Lett. 83, 14711474 (1999).
24. M. S. Santhanam and P. K. Patra, “ Statistics of atmospheric correlations,” Phys. Rev. E 64, 016102 (2001).
25. P. Seba, “ Random matrix analysis of human EEG data,” Phys. Rev. Lett. 91, 198104 (2003).
26. I. Osorio and Y. C. Lai, “ A phase-synchronization and random-matrix based approach to multichannel time-series analysis with application to epilepsy,” Chaos 21, 033108 (2011).
27. F. Luo, Y. Yang, J. Zhong, H. Gao, L. Khan, D. K. Thompson, and J. Zhou, “ Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory,” BMC Bioinf. 8, 299 (2007).
28. S. M. Gibson, S. P. Ficklin, S. Isaacson, F. Luo, F. A. Feltus, and M. C. Smith, “ Massive-scale gene co-expression network construction and robustness testing using random matrix theory,” PLoS One 8, e55871 (2013).
29. S. Jalan and J. N. Bandyopadhyay, “ Random matrix analysis of network Laplacians,” Physica A 387, 667674 (2008).
30. S. Jalan and J. N. Bandyopadhyay, “ Randomness of random networks: A random matrix analysis,” Europhys. Lett. 87, 48010 (2009).
31. J. N. Bandyopadhyay and S. Jalan, “ Universality in complex networks: Random matrix analysis,” Phys. Rev. E 76, 026109 (2007).
32. D. Mulhall, “ Open quantum systems and random matrix theory,” Phys. Rev. C 91, 014305 (2015).
33. S. Jalan and J. Bandyopadhyay, “ Random matrix analysis of complex networks,” Phys. Rev. E 76, 046107 (2007).
34. R. W. Cox, “ Afni: Software for analysis and visualization of functional magnetic resonance neuroimages,” Comput. Biomed. Res. 29, 162173 (1996).
35. V. Menon, “ Large-scale brain networks and psychopathology: a unifying triple network model,” Trends Cognit. Sci. 15, 483506 (2011).
36. V. Menon and L. Q. Uddin, “ Saliency, switching, attention and control: A network model of insula function,” Brain Struct. Funct. 214, 655667 (2010).
37. R. L. Buckner, J. R. Andrews-Hanna, and D. L. Schacter, “ The brain's default network: Anatomy, function, and relevance to disease,” Ann. N. Y. Acad. Sci. 1124, 138 (2008).
38. S. L. Bressler and V. Menon, “ Large-scale brain networks in cognition: Emerging methods and principles,” Trends Cognit. Sci. 14, 277290 (2010).
39. P. Lin, U. Hasson, J. Jovicich, and S. Robinson, “ A neuronal basis for task-negative responses in the human brain,” Cereb. Cortex 21, 821830 (2011).
40. M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle, “ The human brain is intrinsically organized into dynamic, anticorrelated functional networks,” Proc. Natl. Acad. Sci. U.S.A. 102, 96739678 (2005).
41. W. R. Shirer, S. Ryali, E. Rykhlevskaia, V. Menon, and M. D. Greicius, “ Decoding subject-driven cognitive states with whole-brain connectivity patterns,” Cereb. Cortex 22, 158165 (2012).
42. M. Mller, G. Baier, A. Galka, U. Stephani, and H. Muhle, “ Detection and characterization of changes of the correlation structure in multivariate time series,” Phys. Rev. E 71, 046116 (2005).
43. R. A. Fisher, “ Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population,” Biometrika 10, 507521 (1915).
44. R. A. Fisher, “ On the “probable error” of a coefficient of correlation deduced from a small sample,” Metron 1, 332 (1921); available at
45. A. Edelman and N. R. Rao, “ Random matrix theory,” Acta Numer. 14, 233297 (2005).
46. S. Jalan, C. Sarkar, A. Madhusudanan, and S. K. Dwivedi, “ Uncovering randomness and success in society,” PLoS One 9, e88249 (2014).
47. S. Jalan, “ Importance of randomness in biological networks: A random matrix analysis,” Pramana J. Phys. 84, 285293 (2015).
48. D. L. Shepelyansky, in Chaotic Behavior in Quantum Systems, edited by G. Casati ( Springer, USA, 1985), Vol. 120, pp. 187204.
49. W. Luo and P. Sarnak, “ Number variance for arithmetic hyperbolic surfaces,” Commun. Math. Phys. 161, 419432 (1994).
50. J. M. A. S. P. Wickramasinghe, B. Goodman, and R. A. Serota, “ Quantum jumps of saturation level rigidity and anomalous oscillations of level number variance in the semiclassical spectrum of a modified Kepler problem,” Phys. Rev. E 77, 056216 (2008).
51. T. Kriecherbauer, J. Marklof, and A. Soshnikov, “ Random matrices and quantum chaos,” Proc. Natl. Acad. Sci. U.S.A. 98, 1053110532 (2001).
52. I. Jolliffe, Principal Component Analysis, 2nd ed., Springer Series in Statistics ( Springer, New York, 2002).
53. M. C. Munnix, T. Shimada, R. Schafer, F. Leyvraz, T. H. Seligman, T. Guhr, and H. E. Stanley, “ Identifying states of a financial market,” Sci. Rep. 2, 644 (2012).

Data & Media loading...


Article metrics loading...



The temporal evolution properties of the brainnetwork are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brainnetwork during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brainnetwork is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalueanalysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brainnetwork but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brainnetwork is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brainnetwork, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd