Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/25/2/10.1063/1.4907708
1.
1. I. Shmulevich, E. R. Dougherty, and W. Zhang, “ From Boolean to probabilistic Boolean networks as models of genetic regulatory networks,” Proc. IEEE 90, 17781792 (2002).
http://dx.doi.org/10.1109/JPROC.2002.804686
2.
2. S. A. Kauffman, “ Metabolic stability and epigenesis in randomly constructed genetic nets,” J. Theor. Biol. 22, 437467 (1969).
http://dx.doi.org/10.1016/0022-5193(69)90015-0
3.
3. S. Huang and D. E. Ingber, “ Shape-dependent control of cell growth, differentiation, and apoptosis: Switching between attractors in cell regulatory networks,” Exp. Cell Res. 261, 91103 (2000).
http://dx.doi.org/10.1006/excr.2000.5044
4.
4. S. A. Kauffman and E. D. Weinberger, “ The NK model of rugged fitness landscapes and its application to maturation of the immune response,” J. Theor. Biol. 141, 211245 (1989).
http://dx.doi.org/10.1016/S0022-5193(89)80019-0
5.
5. S. Bornholdt and K. Sneppen, “ Neutral mutations and punctuated equilibrium in evolving genetic networks,” Phys. Rev. Lett. 81, 236239 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.236
6.
6. M. D. Stern, “ Emergence of homeostasis and ‘noise imprinting’ in an evolution model,” Proc. Natl. Acad. Sci. U.S.A. 96, 1074610751 (1999).
http://dx.doi.org/10.1073/pnas.96.19.10746
7.
7. S. Bornholdt and K. Sneppen, “ Robustness as an evolutionary principle,” Proc. R. Soc. London, Ser. B 267, 22812286 (2000).
http://dx.doi.org/10.1098/rspb.2000.1280
8.
8. K. E. Kürten, “ Correspondence between neural threshold networks and Kauffman Boolean cellular automata,” J. Phys. A: Math. Gen. 21, L615L619 (1988).
http://dx.doi.org/10.1088/0305-4470/21/11/009
9.
9. S. Bornholdt and T. Rohlf, “ Topological evolution of dynamical networks: Global criticality from local dynamics,” Phys. Rev. Lett. 84, 61146117 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.6114
10.
10. R. Albert and H. G. Othmer, “ The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster,” J. Theor. Biol. 223, 118 (2003).
http://dx.doi.org/10.1016/S0022-5193(03)00035-3
11.
11. S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein, “ Random Boolean network models and the yeast transcriptional network,” Proc. Natl. Acad. Sci. U.S.A. 100, 1479614799 (2003).
http://dx.doi.org/10.1073/pnas.2036429100
12.
12. F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang, “ The yeast cell-cycle network is robustly designed,” Proc. Natl. Acad. Sci. U.S.A. 101, 47814786 (2004).
http://dx.doi.org/10.1073/pnas.0305937101
13.
13. M. Chaves, R. Albert, and E. D. Sontag, “ Robustness and fragility of Boolean models for genetic regulatory networks,” J. Theor. Biol. 235, 431449 (2005).
http://dx.doi.org/10.1016/j.jtbi.2005.01.023
14.
14. A. Chaos, M. Aldana, C. Espinosa-Soto, B. G. P. de León, A. G. Arroyo, and E. R. Alvarez-Buylla, “ From genes to flower patterns and evolution: Dynamic models of gene regulatory networks,” J. Plant Growth Regul. 25, 278289 (2006).
http://dx.doi.org/10.1007/s00344-006-0068-8
15.
15. C. J. Langmead and S. K. Jha, “ Symbolic approaches for finding control strategies in Boolean networks,” J. Bioinf. Comput. Biol. 7, 323338 (2009).
http://dx.doi.org/10.1142/S0219720009004084
16.
16. K. Kobayashi and K. Hiraishi, “ Symbolic approach to verification and control of deterministic/probabilistic Boolean networks,” IET Syst. Biol. 6, 215222 (2012).
http://dx.doi.org/10.1049/iet-syb.2012.0018
17.
17. D. Cheng, H. Qi, and Z. Li, Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach ( Springer-Verlag, London, 2011).
18.
18. R. Li and T. Chu, “ Complete synchronization of Boolean networks,” IEEE Trans. Neural Networks Learn. Syst. 23, 840846 (2012).
http://dx.doi.org/10.1109/TNNLS.2012.2190094
19.
19. R. Li and T. Chu, “ Synchronization in an array of coupled Boolean networks,” Phys. Lett. A 376, 30713075 (2012).
http://dx.doi.org/10.1016/j.physleta.2012.08.037
20.
20. M. Yang and T. Chu, “ Evaluation of attractors and basins of asynchronous random Boolean networks,” Phys. Rev. E 85, 056105 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.056105
21.
21. X. Xu and Y. Hong, “ Solvability and control design for synchronization of Boolean networks,” J. Syst. Sci. Complex. 26, 871885 (2013).
http://dx.doi.org/10.1007/s11424-013-2040-6
22.
22. H. Li and Y. Wan, “ Consistent stabilizability of switched Boolean networks,” Neural Networks 46, 183189 (2013).
http://dx.doi.org/10.1016/j.neunet.2013.05.012
23.
23. C. Luo and X. Wang, “ Dynamics of random Boolean networks under fully asynchronous stochastic update based on linear representation,” PLoS One 8, e66491 (2013).
http://dx.doi.org/10.1371/journal.pone.0066491
24.
24. F. Li and X. Lu, “ Minimum energy control and optimal-satisfactory control of Boolean control network,” Phys. Lett. A 377, 31123118 (2013).
http://dx.doi.org/10.1016/j.physleta.2013.10.002
25.
25. F. Li, “ Synchronization of coupled large-scale Boolean networks,” Chaos 24, 013115 (2014).
http://dx.doi.org/10.1063/1.4863858
26.
26. M. Yang, R. Li, and T. Chu, “ Construction of a Boolean model of gene and protein regulatory network with memory,” Neural Networks 52, 1824 (2014).
http://dx.doi.org/10.1016/j.neunet.2013.12.008
27.
27. Y. Zou and J. Zhu, “ System decomposition with respect to inputs for Boolean control networks,” Automatica 50, 13041309 (2014).
http://dx.doi.org/10.1016/j.automatica.2014.02.039
28.
28. H. Zhang, X. Wang, and X. Lin, “ Synchronization of Boolean networks with different update schemes,” IEEE-ACM Trans. Comput. Biol. Bioinf. 11, 965972 (2014).
http://dx.doi.org/10.1109/TCBB.2014.2338313
29.
29. D. Cheng and H. Qi, “ Controllability and observability of Boolean control networks,” Automatica 45, 16591667 (2009).
http://dx.doi.org/10.1016/j.automatica.2009.03.006
30.
30. Y. Zhao, H. Qi, and D. Cheng, “ Input-state incidence matrix of Boolean control networks and its applications,” Syst. Control Lett. 59, 767774 (2010).
http://dx.doi.org/10.1016/j.sysconle.2010.09.002
31.
31. R. Li, M. Yang, and T. Chu, “ Observability conditions of Boolean control networks,” Int. J. Robust Nonlinear Control 24, 27112723 (2014).
http://dx.doi.org/10.1002/rnc.3019
32.
32. E. Fornasini and M. E. Valcher, “ Observability, reconstructibility and state observers of Boolean control networks,” IEEE Trans. Autom. Control 58, 13901401 (2013).
http://dx.doi.org/10.1109/TAC.2012.2231592
33.
33. D. Laschov and M. Margaliot, “ Controllability of Boolean control networks via the Perron-Frobenius theory,” Automatica 48, 12181223 (2012).
http://dx.doi.org/10.1016/j.automatica.2012.03.022
34.
34. K. Kobayashi, J.-I. Imura, and K. Hiraishi, “ Polynomial-time algorithm for controllability test of a class of Boolean biological networks,” EURASIP J. Bioinf. Syst. Biol. 2010, 210685.
http://dx.doi.org/10.1155/2010/210685
35.
35. F. Li and J. Sun, “ Controllability of Boolean control networks with time delays in states,” Automatica 47, 603607 (2011).
http://dx.doi.org/10.1016/j.automatica.2011.01.040
36.
36. F. Li, J. Sun, and Q.-D. Wu, “ Observability of Boolean control networks with state time delays,” IEEE Trans. Neural Networks 22, 948954 (2011).
http://dx.doi.org/10.1109/TNN.2011.2126594
37.
37. H. Li and Y. Wang, “ On reachability and controllability of switched Boolean control networks,” Automatica 48, 29172922 (2012).
http://dx.doi.org/10.1016/j.automatica.2012.08.029
38.
38. L. Zhang, J. Feng, and J. Yao, “ Controllability and observability of switched Boolean control networks,” IET Control Theory Appl. 6, 24772484 (2012).
http://dx.doi.org/10.1049/iet-cta.2012.0362
39.
39. C. Luo, X. Wang, and H. Liu, “ Controllability of asynchronous Boolean multiplex control networks,” Chaos 24, 033108 (2014).
http://dx.doi.org/10.1063/1.4887278
40.
40. R. Laubenbacher and B. Stigler, “ A computational algebra approach to the reverse engineering of gene regulatory networks,” J. Theor. Biol. 229, 523537 (2004).
http://dx.doi.org/10.1016/j.jtbi.2004.04.037
41.
41. D. Nešić and I. M. Y. Mareels, “ Dead beat controllability of polynomial systems: Symbolic computation approaches,” IEEE Trans. Autom. Control 43, 162175 (1998).
http://dx.doi.org/10.1109/9.661065
42.
42. A. Veliz-Cuba, “ An algebraic approach to reverse engineering finite dynamical systems arising from biology,” SIAM J. Appl. Dyn. Syst. 11, 3148 (2012).
http://dx.doi.org/10.1137/110828794
43.
43. D. Cox, J. Little, and D. O'Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd ed. ( Springer, New York, 2007).
44.
44. Q. Zhao, “ A remark on ‘scalar equations for synchronous Boolean networks with biological applications’ by C. Farrow, J. Heidel, J. Maloney, and J. Rogers,” IEEE Trans. Neural Networks 16, 17151716 (2005).
http://dx.doi.org/10.1109/TNN.2005.857944
45.
45. T. Akutsu, M. Hayashida, W.-K. Ching, and M. K. Ng, “ Control of Boolean networks: Hardness results and algorithms for tree structured networks,” J. Theor. Biol. 244, 670679 (2007).
http://dx.doi.org/10.1016/j.jtbi.2006.09.023
46.
46. D. Laschov, M. Margaliot, and G. Even, “ Observability of Boolean networks: A graph-theoretic approach,” Automatica 49, 23512362 (2013).
http://dx.doi.org/10.1016/j.automatica.2013.04.038
47.
47. A. Veliz-Cuba, A. S. Jarrah, and R. Laubenbacher, “ Polynomial algebra of discrete models in systems biology,” Bioinformatics 26, 16371643 (2010).
http://dx.doi.org/10.1093/bioinformatics/btq240
48.
48. Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “ Controllability of complex networks,” Nature 473, 167173 (2011).
http://dx.doi.org/10.1038/nature10011
49.
49. Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “ Control centrality and hierarchical structure in complex networks,” PLoS One 7, e44459 (2012).
http://dx.doi.org/10.1371/journal.pone.0044459
50.
50. T. Jia, Y.-Y. Liu, E. Csóka, M. Pósfai, J.-J. Slotine, and A.-L. Barabási, “ Emergence of bimodality in controlling complex networks,” Nat. Commun. 4, 2002 (2013).
http://dx.doi.org/10.1038/ncomms3002
51.
51. J. Sun and A. E. Motter, “ Controllability transition and nonlocality in network control,” Phys. Rev. Lett. 110, 208701 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.208701
52.
52. Y. Yang, J. Wang, and A. E. Motter, “ Network observability transitions,” Phys. Rev. Lett. 109, 258701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.258701
53.
53. Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “ Observability of complex systems,” Proc. Natl. Acad. Sci. U.S.A. 110, 24602465 (2013).
http://dx.doi.org/10.1073/pnas.1215508110
54.
54. J. Ruths and D. Ruths, “ Control profiles of complex networks,” Science 343, 13731376 (2014).
http://dx.doi.org/10.1126/science.1242063
55.
55. C. Campbell, K. Shea, and R. Albert, “ Comment on ‘Control profiles of complex networks’,” Science 346, 561 (2014).
http://dx.doi.org/10.1126/science.1256492
56.
56. S. Sahasrabudhe and A. E. Motter, “ Rescuing ecosystems from extinction cascades through compensatory perturbations,” Nat. Commun. 2, 170 (2011).
http://dx.doi.org/10.1038/ncomms1163
57.
57. S. P. Cornelius, W. L. Kath, and A. E. Motter, “ Realistic control of network dynamics,” Nat. Commun. 4, 1942 (2013).
http://dx.doi.org/10.1038/ncomms2939
58.
58. C. Campbell and R. Albert, “ Stabilization of perturbed Boolean network attractors through compensatory interactions,” BMC Syst. Biol. 8, 53 (2014).
http://dx.doi.org/10.1016/j.bbrc.2010.02.174
59.
59. A. S. Jarrah and R. Laubenbacher, “ Discrete models of biochemical networks: The toric variety of nested canalyzing functions,” in Algebraic Biology ( Springer, Berlin, Heidelberg, 2007), pp. 1522.
60.
60. M. Artin, Algebra ( Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1991).
61.
61. R. Li, M. Yang, and T. Chu, “ State feedback stabilization for Boolean control networks,” IEEE Trans. Autom. Control 58, 18531857 (2013).
http://dx.doi.org/10.1109/TAC.2013.2238092
62.
62. B. Faryabi, G. Vahedi, J.-F. Chamberland, A. Datta, and E. R. Dougherty, “ Optimal constrained stationary intervention in gene regulatory networks,” EURASIP J. Bioinf. Syst. Biol. 2008, 620767.
http://dx.doi.org/10.1155/2008/620767
63.
63. E. D. Sontag, “ On the observability of polynomial systems, I: Finite-time problems,” SIAM J. Control Optim. 17, 139151 (1979).
http://dx.doi.org/10.1137/0317011
64.
64. S. Klamt, J. Saez-Rodriguez, J. A. Lindquist, L. Simeoni, and E. D. Gilles, “ A methodology for the structural and functional analysis of signaling and regulatory networks,” BMC Bioinf. 7, 56 (2006).
http://dx.doi.org/10.1186/1471-2105-7-56
65.
65. R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, and T. P. Loughran, Jr., “ Network model of survival signaling in large granular lymphocyte leukemia,” Proc. Natl. Acad. Sci. U.S.A. 105, 1630816313 (2008).
http://dx.doi.org/10.1073/pnas.0806447105
66.
66. K. Willadsen and J. Wiles, “ Robustness and state-space structure of Boolean gene regulatory models,” J. Theor. Biol. 249, 749765 (2007).
http://dx.doi.org/10.1016/j.jtbi.2007.09.004
67.
67. R. Laubenbacher, F. Hinkelmann, D. Murrugarra, and A. Veliz-Cuba, “ Algebraic models and their use in systems biology,” in Discrete and Topological Models in Molecular Biology ( Springer, Berlin, Heidelberg, 2014), pp. 443474.
68.
68. R.-S. Wang, A. Saadatpour, and R. Albert, “ Boolean modeling in systems biology: An overview of methodology and applications,” Phys. Biol. 9, 055001 (2012).
http://dx.doi.org/10.1088/1478-3975/9/5/055001
69.
69. A. Saadatpour, I. Albert, and R. Albert, “ Attractor analysis of asynchronous Boolean models of signal transduction networks,” J. Theor. Biol. 266, 641656 (2010).
http://dx.doi.org/10.1016/j.jtbi.2010.07.022
http://aip.metastore.ingenta.com/content/aip/journal/chaos/25/2/10.1063/1.4907708
Loading
/content/aip/journal/chaos/25/2/10.1063/1.4907708
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/25/2/10.1063/1.4907708
2015-02-10
2016-09-28

Abstract

Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/25/2/1.4907708.html;jsessionid=hkAYubASxEZ3SJ0v7XPODTpA.x-aip-live-03?itemId=/content/aip/journal/chaos/25/2/10.1063/1.4907708&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/25/2/10.1063/1.4907708&pageURL=http://scitation.aip.org/content/aip/journal/chaos/25/2/10.1063/1.4907708'
Right1,Right2,Right3,