Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/25/3/10.1063/1.4908174
1.
1. E. Lorenz, J. Atmos. Sci. 20, 130 (1963).
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
2.
2. T. N. Palmer, Weather 48, 314 (1993).
http://dx.doi.org/10.1002/j.1477-8696.1993.tb05802.x
3.
3. I. N. James, Introduction to Circulating Atmospheres, edited by R. W. Houghton, M. J. Rycroft, and A. J. Dessler ( Cambridge University Press, Cambridge, 1994).
4.
4. K. C. Mo and M. Ghil, J. Geophys. Res. 93, 10927, doi:10.1029/JD093iD09p10927 (1988).
http://dx.doi.org/10.1029/JD093iD09p10927
5.
5. M. Kimoto and M. Ghil, J. Atmos. Sci. 50, 2625 (1993).
http://dx.doi.org/10.1175/1520-0469(1993)050<2625:MFRITN>2.0.CO;2
6.
6. P. Smyth, K. Ide, and M. Ghil, J. Atmos. Sci. 56, 3704 (1999).
http://dx.doi.org/10.1175/1520-0469(1999)056<3704:MRINHH>2.0.CO;2
7.
7. G. Plaut and R. Vautard, J. Atmos. Sci. 51, 210 (1994).
http://dx.doi.org/10.1175/1520-0469(1994)051<0210:SOLFOA>2.0.CO;2
8.
8. M. Ghil and A. Robertson, Proc. Natl. Acad. Sci. U.S.A. 99, 2493 (2002).
http://dx.doi.org/10.1073/pnas.012580899
9.
9. D. Kondrashov, K. Ide, and M. Ghil, J. Atmos. Sci. 61, 568 (2004).
http://dx.doi.org/10.1175/1520-0469(2004)061<0568:WRAPTP>2.0.CO;2
10.
10. P. Smyth, K. Ide, and M. Ghil, J. Atmos. Sci. 56, 3704 (1999).
http://dx.doi.org/10.1175/1520-0469(1999)056<3704:MRINHH>2.0.CO;2
11.
11. A. J. Majda, C. L. Franzke, A. Fischer, and D. Crommelin, Proc. Natl. Acad. Sci. U.S.A. 103, 8309 (2006).
http://dx.doi.org/10.1073/pnas.0602641103
12.
12. C. L. Franzke, D. Crommelin, A. Fischer, and A. J. Majda, J. Clim. 21, 1740 (2008).
http://dx.doi.org/10.1175/2007JCLI1751.1
13.
13. D. B. Stephenson, A. Hannachi, and A. O'Neill, Q. J. R. Meteorolog. Soc. 130, 583 (2004).
http://dx.doi.org/10.1256/qj.02.146
14.
14. B. Christiansen, J. Clim. 20, 2229 (2007).
http://dx.doi.org/10.1175/JCLI4107.1
15.
15. D. R. Fereday, J. R. Knight, A. A. Scaife, C. K. Folland, and A. Philipp, J. Clim. 21, 3687 (2008).
http://dx.doi.org/10.1175/2007JCLI1875.1
16.
16. A. Dawson, T. N. Palmer, and S. Corti, Clim. Dyn. 39, L21805 (2014).
17.
17. T. Jung, T. N. Palmer, and G. J. Shutts, Geophys. Res. Lett. 32, L23811, doi:10.1029/2005GL024248 (2005).
http://dx.doi.org/10.1029/2005GL024248
18.
18. A. Dawson, T. N. Palmer, and S. Corti, Geophys. Res. Lett. 39, L21805 (2012).
19.
19. J. G. Charney and J. G. DeVore, J. Atmos. Sci. 36, 1205 (1979).
http://dx.doi.org/10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2
20.
20. E. R. Weeks, H. L. Swinney, and M. Ghil, Science 278, 1598 (1997).
http://dx.doi.org/10.1126/science.278.5343.1598
21.
21. P. D. Williams, Geophys. Res. Lett. 30, 2255, doi:10.1029/2003GL018498 (2003).
http://dx.doi.org/10.1029/2003GL018498
22.
22. P. D. Williams, T. W. N. Haine, and P. L. Read, Nonlinear Processes Geophys. 11, 127 (2004).
http://dx.doi.org/10.5194/npg-11-127-2004
23.
23. P. D. Williams, T. W. N. Haine, and P. L. Read, J. Fluid Mech. 528, 1 (2005).
http://dx.doi.org/10.1017/S0022112004002873
24.
24. P. D. Williams, T. W. N. Haine, and P. L. Read, J. Atmos. Sci. 65, 3543 (2008).
http://dx.doi.org/10.1175/2008JAS2480.1
25.
25. K. Kaneko, Phys. D 54, 5 (1991).
http://dx.doi.org/10.1016/0167-2789(91)90103-G
26.
26. H. Itoh and M. Kimoto, J. Atmos. Sci. 53, 2217 (1996).
http://dx.doi.org/10.1175/1520-0469(1996)053<2217:MAACII>2.0.CO;2
27.
27. D. Crommelin, J. D. Opsteegh, and F. Verhulst, J. Atmos. Sci. 61, 1406 (2004).
http://dx.doi.org/10.1175/1520-0469(2004)061<1406:AMFARB>2.0.CO;2
28.
28. D. Crommelin, J. Atmos. Sci. 60, 229 (2003).
http://dx.doi.org/10.1175/1520-0469(2003)060<0229:RTAHCI>2.0.CO;2
29.
29. F. M. Selten, J. Atmos. Sci. 52, 915 (1995).
http://dx.doi.org/10.1175/1520-0469(1995)052<0915:AEDOTD>2.0.CO;2
30.
30. B. Legras and M. Ghil, J. Atmos. Sci. 42, 433 (1985).
http://dx.doi.org/10.1175/1520-0469(1985)042<0433:PABAVI>2.0.CO;2
31.
31. G. Branstator and J. D. Opsteegh, J. Atmos. Sci. 46, 1799 (1989).
http://dx.doi.org/10.1175/1520-0469(1989)046<1799:FSOTBV>2.0.CO;2
32.
32. C. W. Gardiner, Handbook of Stochastic Methods, edited by H. Haken ( Springer, Berlin Heidelberg, 2009), p. 447.
33.
33. C. Penland, Bull. Am. Meteorol. Soc. 84, 921 (2003).
http://dx.doi.org/10.1175/BAMS-84-7-921
34.
34. A. J. Majda, I. Timofeyev, and E. Vanden-Eijnden, Proc. Natl. Acad. Sci. 96, 14687 (1999).
http://dx.doi.org/10.1073/pnas.96.26.14687
35.
35. A. J. Majda, I. Timofeyev, and E. Vanden-Eijnden, Commun. Pure Appl. Math. 54, 891 (2001).
http://dx.doi.org/10.1002/cpa.1014
36.
36. C. L. Franzke, A. J. Majda, and E. Vanden-Eijnden, J. Atmos. Sci. 62, 1722 (2005).
http://dx.doi.org/10.1175/JAS3438.1
37.
37. C. L. E. Franzke, T. J. O'Kane, J. Berner, P. D. Williams, and V. Lucarini, Wiley Interdiscip. Rev.: Clim. Change 6, 63 (2015).
38.
38. A. J. Chorin and O. H. Hald, Stochastic Tools in Mathematics and Science, edited by S. Antman, P. Holmes, and K. Sreenivasan ( Springer, New York, 2009).
39.
39. E. Darve, J. Solomon, and A. Kia, Proc. Natl. Acad. Sci. U.S.A. 106, 10884 (2009).
http://dx.doi.org/10.1073/pnas.0902633106
40.
40. J. Wouters and V. Lucarini, J. Stat. Phys. 151, 850 (2013).
http://dx.doi.org/10.1007/s10955-013-0726-8
41.
41. D. Kondrashov, M. D. Chekroun, and M. Ghil, Phys. D 297, 33 (2015).
http://dx.doi.org/10.1016/j.physd.2014.12.005
42.
42. T. Palmer and P. D. Williams, Stochastic Physics and Climate Modelling, edited by P. Williams and T. Palmer ( Cambridge University Press, Cambridge, 2009), p. 496.
43.
43. A. Lasota and M. C. Mackey, Chaos, Fractals and Noise, edited by J. E. Marsden and L. Sirovich ( Springer, Berlin, 1994).
44.
44. G. Froyland and K. Padberg-gehle, Ergodic Theory, Open Dynamics, and Coherent Structures, edited by W. Bahsoun, C. Bose, and G. Froyland, Springer Proceedings in Mathematics and Statistics Vol. 70 ( Springer, New York, NY, 2014), pp. 171216.
45.
45. M. Pollicott, Inventiones Math. 81, 413 (1985).
http://dx.doi.org/10.1007/BF01388579
46.
46. D. Ruelle, Phys. Rev. Lett. 56, 405 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.405
47.
47. D. Ruelle, J. Stat. Phys. 44, 281 (1986).
http://dx.doi.org/10.1007/BF01011300
48.
48. O. Butterley and C. Liverani, J. Mod. Dyn. 1, 301 (2007).
http://dx.doi.org/10.3934/jmd.2007.1.301
49.
49. M. D. Chekroun, J. D. Neelin, D. Kondrashov, J. C. McWilliams,and M. Ghil, Proc. Natl. Acad. Sci. U.S.A. 111, 1684 (2014).
http://dx.doi.org/10.1073/pnas.1321816111
50.
50. M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held, E. H. van Nes, M. Rietkerk, and G. Sugihara, Nature 461, 53 (2009).
http://dx.doi.org/10.1038/nature08227
51.
51. M. van der Mheen, H. A. Dijkstra, A. Gozolchiani, M. den Toom, Q. Feng, J. Kurths, and E. Hernandez-Garcia, Geophys. Res. Lett. 40, 2714, doi:10.1002/grl.50515 (2013).
http://dx.doi.org/10.1002/grl.50515
52.
52. J. Viebahn and H. A. Dijkstra, Int. J. Bifurcation Chaos 24, 1430007 (2014).
http://dx.doi.org/10.1142/S0218127414300079
53.
53. Q. Y. Feng, J. P. Viebahn, and H. A. Dijkstra, Geophys. Res. Lett. 41, 6009, doi:10.1002/2014GL061019 (2014).
http://dx.doi.org/10.1002/2014GL061019
54.
54. G. Tirabassi, J. Viebahn, V. Dakos, H. Dijkstra, C. Masoller, M. Rietkerk, and S. Dekker, Ecol. Complexity 19, 148 (2014).
http://dx.doi.org/10.1016/j.ecocom.2014.06.004
55.
55. C. S. Peirce, Science 4, 453 (1884).
56.
56. D. B. Stephenson, Weather Forecasting 15, 221 (2000).
http://dx.doi.org/10.1175/1520-0434(2000)015<0221:UOTORF>2.0.CO;2
57.
57. J. E. Thornes and D. B. Stephenson, Meteorol. Appl. 8, 307 (2001).
http://dx.doi.org/10.1017/S1350482701003061
58.
58. J. Roads, J. Atmos. Sci. 44, 3495 (1987).
http://dx.doi.org/10.1175/1520-0469(1987)044<3495:PITER>2.0.CO;2
59.
59. H. von Storch and F. W. Zwiers, in Statistical Analysis in Climate Research ( Cambridge University Press, Cambridge, 1999), Chap. 13, pp. 293316.
60.
60. D. Givon, R. Kupferman, and A. Stuart, Nonlinearity 17, R55 (2004).
http://dx.doi.org/10.1088/0951-7715/17/6/R01
61.
61. W. Rudin, Functional Analysis, edited by L. Gurley, R. Wallis, and M. Luhrs ( McGraw-Hill, New York, 1991), p. 424.
62.
62. S. Gouëzel and C. Liverani, Ergodic Theory Dyn. Syst. 26, 189 (2006).
http://dx.doi.org/10.1017/S0143385705000374
63.
63. J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).
http://dx.doi.org/10.1103/RevModPhys.57.617
64.
64. L. Young, J. Stat. Phys. 108, 733 (2002).
http://dx.doi.org/10.1023/A:1019762724717
65.
65. K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, edited by S. Axler, F. W. Gehring, and K. A. Ribet ( Springer, New York, 2001), p. 586.
66.
66. G. Gallavotti and E. G. D. Cohen, J. Stat. Phys. 80, 931 (1995).
http://dx.doi.org/10.1007/BF02179860
67.
67. Y. Kifer, J. Anal. Math. 47, 111 (1986).
http://dx.doi.org/10.1007/BF02792535
68.
68. M. Dellnitz and O. Junge, SIAM J. Numer. Anal. 36, 491 (1999).
http://dx.doi.org/10.1137/S0036142996313002
69.
69. M. Blank, G. Keller, and C. Liverani, Nonlinearity 15, 1905 (2002).
http://dx.doi.org/10.1088/0951-7715/15/6/309
70.
70. G. Keller, C. Liverani, and T. U. D. Roma, “ Stability of the spectrum for transfer operators,” Technical Report (ANN. SCUOLA NORM. SUP. PISA CL SCI, 1998).
71.
71. V. Baladi and M. Holschneider, Nonlinearity 12, 525 (1999).
http://dx.doi.org/10.1088/0951-7715/12/3/006
72.
72. G. Froyland, Nonlinear Dynamics and Statistics, edited by A. I. Mees ( Birkhäuser Boston, Boston, 2001), Chap. 12, pp. 281321.
73.
73. S. M. Ulam, Problems in Modern Mathematics ( Dover Publications Inc., 1964).
74.
74. G. Froyland, Nonlinear Anal.: Theory Methods Appl. 32, 831 (1998).
http://dx.doi.org/10.1016/S0362-546X(97)00527-0
75.
75. P. Billingsley, Statistical Inference for Markov Process ( University of Chicago Press, Chicago, 1961).
76.
76. G. Froyland, O. Junge, and P. Koltai, SIAM J. Numer. Anal. 51, 223 (2013).
http://dx.doi.org/10.1137/110819986
77.
77. V. Baladi, Positive Transfer Operators and Decay of Correlations, edited by R. S. MacKay ( World Scientific, Singapore, 2000), p. 314.
78.
78. G. Froyland and K. Padberg, Physica D 238, 1507 (2009).
http://dx.doi.org/10.1016/j.physd.2009.03.002
79.
79. M. Dellnitz and O. Junge, Int. J. Bifurcation Chaos 7, 2475 (1997).
http://dx.doi.org/10.1142/S0218127497001655
80.
80. G. Froyland and M. Dellnitz, SIAM J. Sci. Comput. 24, 1839 (2003).
http://dx.doi.org/10.1137/S106482750238911X
81.
81. T. DelSole, J. Atmos. Sci. 57, 2158 (2000).
http://dx.doi.org/10.1175/1520-0469(2000)057<2158:AFLOMM>2.0.CO;2
82.
82. J. Berner, J. Atmos. Sci. 62, 2098 (2005).
http://dx.doi.org/10.1175/JAS3468.1
83.
83. D. Crommelin and E. Vanden-Eijnden, Multiscale Model. Simul. 9, 1588 (2011).
http://dx.doi.org/10.1137/100795917
84.
84. C. Penland and P. Sardeshmukh, J. Clim. 8, 1999 (1995).
http://dx.doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2
85.
85. K. Deng, P. Mehta, and S. Meyn, IEEE Autom. Control 56, 2793 (2011).
http://dx.doi.org/10.1109/TAC.2011.2141350
86.
86. M. Rosvall and C. T. Bergstrom, Proc. Natl. Acad. Sci. U.S.A. 105, 1118 (2008).
http://dx.doi.org/10.1073/pnas.0706851105
87.
87. T. M. Cover and J. A. Thomas, Elements of Information Theory ( John Wiley & Sons, New Jersey, 1991), Chap. 2, pp. 1355.
88.
88. A. Clauset, M. Newman, and C. Moore, Phys. Rev. E 70, 066111 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.066111
89.
89. V. Kharin and F. Zwiers, J. Clim. 16, 4145 (2003).
http://dx.doi.org/10.1175/1520-0442(2003)016<4145:OTRSOP>2.0.CO;2
90.
90. G. Branstator and J. Berner, J. Atmos. Sci. 62, 1792 (2005).
http://dx.doi.org/10.1175/JAS3429.1
91.
91. A. Tantet and H. A. Dijkstra, Earth Syst. Dyn. 5, 1 (2014).
http://dx.doi.org/10.5194/esd-5-1-2014
92.
92. T. Palmer, G. Shutts, R. Hagedorn, F. Doblas-Reyes, T. Jung, and M. Leutbecher, Annu. Rev. Earth Planet. Sci. 33, 163 (2005).
http://dx.doi.org/10.1146/annurev.earth.33.092203.122552
93.
93. B. Efron, “ The jackknife, the bootstrap, and other resampling plans,” Technical Report, Stanford University, Stanford, 1980.
http://dx.doi.org/10.1137/1.9781611970319
94.
94. M. Mudelsee, Climate Time Series Analysis: Classical Statistical and Bootstrap Methods, edited by L. A. Mysak and K. Hamilton ( Springer, New York, 2010), p. 474.
95.
95. B. A. Craig and P. P. Sendi, Health Econ. 11, 33 (2002).
http://dx.doi.org/10.1002/hec.654
http://aip.metastore.ingenta.com/content/aip/journal/chaos/25/3/10.1063/1.4908174
Loading
/content/aip/journal/chaos/25/3/10.1063/1.4908174
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/25/3/10.1063/1.4908174
2015-02-18
2016-12-09

Abstract

The existence of persistent midlatitude atmospheric flow regimes with time-scales larger than 5–10 days and indications of preferred transitions between them motivates to develop early warning indicators for such regime transitions. In this paper, we use a hemispheric barotropic model together with estimates of transfer operators on a reduced phase space to develop an early warning indicator of the zonal to blocked flow transition in this model. It is shown that the spectrum of the transfer operators can be used to study the slow dynamics of the flow as well as the non-Markovian character of the reduction. The slowest motions are thereby found to have time scales of three to six weeks and to be associated with meta-stable regimes (and their transitions) which can be detected as almost-invariant sets of the transfer operator. From the energy budget of the model, we are able to explain the meta-stability of the regimes and the existence of preferred transition paths. Even though the model is highly simplified, the skill of the early warning indicator is promising, suggesting that the transfer operator approach can be used in parallel to an operational deterministic model for stochastic prediction or to assess forecast uncertainty.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/25/3/1.4908174.html;jsessionid=aJEoPoqwQ6BnstOx-MR6jmax.x-aip-live-03?itemId=/content/aip/journal/chaos/25/3/10.1063/1.4908174&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/25/3/10.1063/1.4908174&pageURL=http://scitation.aip.org/content/aip/journal/chaos/25/3/10.1063/1.4908174'
Right1,Right2,Right3,