Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/25/3/10.1063/1.4908231
1.
1. V. Rom-Kedar, A. Leonard, and S. Wiggins, “ An analytical study of transport, mixing and chaos in an unsteady vortical flow,” J. Fluid Mech. 214, 347394 (1990).
http://dx.doi.org/10.1017/S0022112090000167
2.
2. A. Poje and G. Haller, “ Geometry of cross-stream mixing in a double-gyre ocean model,” J. Phys. Oceanogr. 29, 16491665 (1999).
http://dx.doi.org/10.1175/1520-0485(1999)029<1649:GOCSMI>2.0.CO;2
3.
3. A. M. Mancho, D. Small, and S. Wiggins, “ A tutorial on dynamical systems concepts applied to Lagrangian transport in oceanic flows defined as finite time data sets: Theoretical and computational issues,” Phys. Rep. 437, 55124 (2006).
http://dx.doi.org/10.1016/j.physrep.2006.09.005
4.
4. A. Mancho, E. Hernández-García, D. Small, S. Wiggins, and V. Fernández, “ Lagrangian transport through an ocean front in the North-Western Mediterranean Sea,” J. Phys. Oceanogr. 38, 12221237 (2008).
http://dx.doi.org/10.1175/2007JPO3677.1
5.
5. S. Balasuriya, “ Explicit invariant manifolds and specialised trajectories in a class of unsteady flows,” Phys. Fluids 24, 127101 (2012).
http://dx.doi.org/10.1063/1.4769979
6.
6. G. Haller and G. Yuan, “ Lagrangian coherent structures and mixing in two-dimensional turbulence,” Physica D 147, 352370 (2000).
http://dx.doi.org/10.1016/S0167-2789(00)00142-1
7.
7. T. Peacock and J. Dabiri, “ Introduction to focus issue: Lagrangian coherent structures,” Chaos 20, 017501 (2010).
http://dx.doi.org/10.1063/1.3278173
8.
8. G. Haller and F. J. Beron-Vera, “ Geodesic theory of transport barriers in two-dimensional flows,” Physica D 241, 16801702 (2012).
http://dx.doi.org/10.1016/j.physd.2012.06.012
9.
9. G. Haller, “ Distinguished material surfaces and coherent structure in three-dimensional fluid flows,” Physica D 149, 248277 (2001).
http://dx.doi.org/10.1016/S0167-2789(00)00199-8
10.
10. B. Joseph and B. Legras, “ Relation between kinematic boundaries, stirring, and barriers for the Antartic polar vortex,” J. Atmos. Sci. 59, 11981212 (2002).
http://dx.doi.org/10.1175/1520-0469(2002)059<1198:RBKBSA>2.0.CO;2
11.
11. F. d'Ovidio, V. Fernandez, E. Hernandez-García, and C. Lopez, “ Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents,” Geophys. Res. Lett. 31, L17203, doi:10.1029/2004GL020328 (2004).
http://dx.doi.org/10.1029/2004GL020328
12.
12. S. C. Shadden, F. Lekien, and J. E. Marsden, “ Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows,” Physica D 212, 271304 (2005).
http://dx.doi.org/10.1016/j.physd.2005.10.007
13.
13. F. Huhn, A. von Kameke, S. Allen-Perkins, P. Montero, A. Venancio, and V. Pérez-Muñuzuri, “ Horizontal Lagrangian transport in a tidal-driven estuary—Transport barriers attached to prominent coastal boundaries,” Cont. Shelf Res. 39–40, 113 (2012).
http://dx.doi.org/10.1016/j.csr.2012.03.005
14.
14. A. M. Mancho, S. Wiggins, J. Curbelo, and C. Mendoza, “ Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems,” Commun. Nonlinear Sci. Numer. Simul. 18, 35303557 (2013).
http://dx.doi.org/10.1016/j.cnsns.2013.05.002
15.
15. G. Froyland and M. Dellnitz, “ Detecting and locating near-optimal almost-invariant sets and cycles,” SIAM J. Sci. Comput. 24, 18391863 (2003).
http://dx.doi.org/10.1137/S106482750238911X
16.
16. G. Froyland, “ Statistically optimal almost-invariant sets,” Physica D 200, 205219 (2005).
http://dx.doi.org/10.1016/j.physd.2004.11.008
17.
17. G. Froyland, K. Padberg, M. H. England, and A. M. Treguier, “ Detection of coherent oceanic structures via transfer operators,” Phys. Rev. Lett. 98, 224503 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.224503
18.
18. M. Dellnitz, G. Froyland, C. Horenkamp, K. Padberg-Gehle, and A. Sen Gupta, “ Seasonal variability of the subpolar gyres in the Southern Ocean: A numerical investigation based on transfer operators,” Nonlinear Processes Geophys. 16, 655663 (2009).
http://dx.doi.org/10.5194/npg-16-655-2009
19.
19. G. Froyland, N. Santitissadeekorn, and A. Monahan, “ Transport in time-dependent dynamical systems: Finite-time coherent sets,” Chaos 20, 043116 (2010).
http://dx.doi.org/10.1063/1.3502450
20.
20. N. Santitissadeekorn, G. Froyland, and A. Monahan, “ Optimally coherent sets in geophysical flows: A transfer-operator approach to delimiting the stratospheric polar vortex,” Phys. Rev. E 82, 056311 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.056311
21.
21. Z. Levnajić and I. Mezić, “ Ergodic theory and visualization. I. Mesochronic plots for visualization of ergodic partition and invariant sets,” Chaos 20, 033114 (2010).
http://dx.doi.org/10.1063/1.3458896
22.
22. G. Froyland, C. Horenkamp, V. Rossi, N. Santitissadeekorn, and A. S. Gupta, “ Three-dimensional characterization and tracking of an Agulhas ring,” Ocean Modell. 52, 6975 (2012).
http://dx.doi.org/10.1016/j.ocemod.2012.05.001
23.
23. P. Tallapragada and S. D. Ross, “ A set oriented definition of finite-time Lyapunov exponents and coherent sets,” Commun. Nonlinear Sci. Numer. Simul. 18, 11061126 (2013).
http://dx.doi.org/10.1016/j.cnsns.2012.09.017
24.
24. F. Lekien, S. C. Shadden, and J. E. Marsden, “ Lagrangian coherent structures in n-dimensional systems,” J. Math. Phys. 48, 065404 (2007).
http://dx.doi.org/10.1063/1.2740025
25.
25. G. Froyland and K. Padberg, “ Almost-invariant sets and invariant manifolds-connecting probabilistic and geometric descriptions of coherent structures in flows,” Physica D 238, 15071523 (2009).
http://dx.doi.org/10.1016/j.physd.2009.03.002
26.
26. M. Branicki and S. Wiggins, “ Finite-time Lagrangian transport analysis: Stable and unstable manifolds of hyperbolic trajectories and finite-time Lyapunov exponents,” Nonlinear Processes Geophys. 17, 136 (2010).
http://dx.doi.org/10.5194/npg-17-1-2010
27.
27. G. Haller, “ A variational theory of hyperbolic Lagrangian coherent structures,” Physica D 240, 574598 (2011);
http://dx.doi.org/10.1016/j.physd.2010.11.010
27. M. Farazmand and G. Haller, “ Erratum and addendum to ‘A variational theory of hyperbolic Lagrangian coherent structures (Physica D 240 (2011) 574–598)’,” Physica D 241, 439441 (2012).
http://dx.doi.org/10.1016/j.physd.2011.09.013
28.
28. D. Karrasch, “ Comment on ‘A variational theory of hyperbolic Lagrangian coherent structures (Physica D 240 (2011) 574–598)’,” Physica D 241, 14701473 (2012).
http://dx.doi.org/10.1016/j.physd.2012.05.008
29.
29. G. Froyland and K. Padberg-Gehle, “ Finite-time entropy: A probabilistic approach for measuring nonlinear stretching,” Physica D 241, 16121628 (2012).
http://dx.doi.org/10.1016/j.physd.2012.06.010
30.
30. D. W. Waugh and E. R. Abraham, “ Stirring in the global surface ocean,” Geophys. Res. Lett. 35, L20605, doi:10.1029/2008GL035526 (2008).
http://dx.doi.org/10.1029/2008GL035526
31.
31. V. Rossi, C. López, E. Hernández-García, J. Sudre, V. Garçon, and Y. Morel, “ Surface mixing and biological activity in the four Eastern Boundary upwelling systems,” Nonlinear Processes Geophys. 16, 557568 (2009).
http://dx.doi.org/10.5194/npg-16-557-2009
32.
32. I. Hernández-Carrasco, C. López, E. Hernández-García, and A. Turiel, “ Seasonal and regional characterization of horizontal stirring in the global ocean,” J. Geophys. Res. 117, C10007, doi:10.1029/2012JC008222 (2012).
http://dx.doi.org/10.1029/2012JC008222
33.
33. R. Preis, M. Dellnitz, M. Hessel, C. Schütte, and E. Meerbach, “ Dominant paths between almost invariant sets of dynamical systems,” preprint 154 of the DFG Schwerpunktprogramm 1095 (2004), see http://www2.math.uni-paderborn.de/ags/ag-dellnitz.
34.
34. M. Dellnitz, M. Hessel-von Molo, P. Metzner, R. Preis, and C. Schütte, “ Graph algorithms for dynamical systems,” in Analysis, Modeling and Simulation of Multiscale Problems, edited by A. Mielke ( Springer Verlag, Heidelberg, 2006), pp. 619645.
35.
35. N. Santitissadeekorn and E. Bollt, “ Identifying stochastic basin hopping by partitioning with graph modularity,” Physica D 231, 95107 (2007).
http://dx.doi.org/10.1016/j.physd.2007.04.008
36.
36. M. Nilsson-Jacobi, C. André, K. Doos, and P. R. Jonsson, “ Identification of subpopulations from connectivity matrices,” Ecography 35, 10041016 (2012).
http://dx.doi.org/10.1111/j.1600-0587.2012.07281.x
37.
37. M. Speetjens, M. Lauret, H. Nijmeijer, and P. Anderson, “ Footprints of Lagrangian flow structures in Eulerian concentration distributions in periodic mixing flows,” Physica D 250, 2033 (2013).
http://dx.doi.org/10.1016/j.physd.2013.01.007
38.
38. C. J. Thomas, J. Lambrechts, E. Wolanski, V. Traag, V. D. Blondel, E. Deleersnijder, and E. Hanert, “ Numerical modelling and graph theory tools to study ecological connectivity in the Great Barrier Reef,” Ecol. Modell. 272, 160174 (2014).
http://dx.doi.org/10.1016/j.ecolmodel.2013.10.002
39.
39. V. Rossi, E. Ser-Giacomi, C. López, and E. Hernández-García, “ Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves,” Geophys. Res. Lett. 41, 28832891, doi:10.1002/2014GL059540 (2014).
http://dx.doi.org/10.1002/2014GL059540
40.
40. R. Albert and A.-L. Barabási, “ Statistical mechanics of complex networks,” Rev. Mod. Phys. 74, 4797 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.47
41.
41. S. N. Dorogovtsev and J. F. F. Mendes, “ Evolution of networks,” Adv. Phys. 51, 10791187 (2002).
http://dx.doi.org/10.1080/00018730110112519
42.
42. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “ Complex networks: Structure and dynamics,” Phys. Rep. 424, 175308 (2006).
http://dx.doi.org/10.1016/j.physrep.2005.10.009
43.
43. M. E. J. Newman, Networks: An Introduction ( Oxford University Press, Oxford, 2010).
44.
44. A. A. Tsonis, K. L. Swanson, and P. J. Roebber, “ What do networks have to do with climate?,” Bull. Am. Meteorol. Soc. 87, 585595 (2006).
http://dx.doi.org/10.1175/BAMS-87-5-585
45.
45. K. Yamasaki, A. Gozolchiani, and S. Havlin, “ Climate networks around the globe are significantly affected by El Niño,” Phys. Rev. Lett. 100, 228501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.228501
46.
46. J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, “ The backbone of the climate network,” EPL (Europhys. Lett.) 87, 48007 (2009).
http://dx.doi.org/10.1209/0295-5075/87/48007
47.
47. N. Malik, B. Bookhagen, N. Marwan, and J. Kurths, “ Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks,” Climate Dyn. 39, 971987 (2012).
http://dx.doi.org/10.1007/s00382-011-1156-4
48.
48. A. Gozolchiani, S. Havlin, and K. Yamasaki, “ Emergence of El Niño as an autonomous component in the climate network,” Phys. Rev. Lett. 107, 148501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.148501
49.
49. M. Barreiro, A. C. Marti, and C. Masoller, “ Inferring long memory processes in the climate network via ordinal pattern analysis,” Chaos 21, 013101 (2011).
http://dx.doi.org/10.1063/1.3545273
50.
50. Y. Berezin, A. Gozolchiani, O. Guez, and S. Havlin, “ Stability of climate networks with time,” Sci. Rep. 2, 666 (2012).
http://dx.doi.org/10.1038/srep00666
51.
51. N. Molkenthin, K. Rehfeld, N. Marwan, and J. Kurths, “ Networks from flows-from dynamics to topology,” Sci. Rep. 4, 4119 (2014).
http://dx.doi.org/10.1038/srep04119
52.
52. M. E. Newman, “ Analysis of weighted networks,” Phys. Rev. E 70, 056131 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.056131
53.
53. M. Barthélemy, “ Spatial networks,” Phys. Rep. 499, 1101 (2011).
http://dx.doi.org/10.1016/j.physrep.2010.11.002
54.
54. P. Holme and J. Saramäki, “ Temporal networks,” Phys. Rep. 519, 97125 (2012).
http://dx.doi.org/10.1016/j.physrep.2012.03.001
55.
55. G. Froyland, R. M. Stuart, and E. van Sebille, “ How well-connected is the surface of the global ocean?,” Chaos 24, 033126 (2014).
http://dx.doi.org/10.1063/1.4892530
56.
56. P. Oddo, M. Adani, N. Pinardi, C. Fratianni, M. Tonani, D. Pettenuzzo et al., “ A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting,” Ocean Sci. 5, 461 (2009).
http://dx.doi.org/10.5194/os-5-461-2009
57.
57. C. Millot and I. Taupier-Letage, “ Circulation in the Mediterranean Sea,” in The Mediterranean Sea, Handbook of Environmental Chemistry Vol. 5K, edited by A. Saliot ( Springer-Verlag, Berlin, Heidelberg, 2005), pp. 2966.
58.
58. T. Tél and M. Gruiz, Chaotic Dynamics: An Introduction Based on Classical Mechanics ( Cambridge University Press, Cambridge, 2006).
59.
59. A. Rényi, Probability Theory ( North-Holland, Amsterdam, 1970).
60.
60. G. Boffetta, M. Cencini, M. Falcioni, and A. Vulpiani, “ Predictability: A way to characterize complexity,” Phys. Rep. 356, 367474 (2002).
http://dx.doi.org/10.1016/S0370-1573(01)00025-4
61.
61. P. Castiglione, M. Falcioni, A. Lesne, and A. Vulpiani, Chaos and Coarse Graining in Statistical Mechanics ( Cambridge University Press, Cambridge, 2010).
62.
62. M. Cencini, F. Cecconi, and A. Vulpiani, Chaos: From Simple Models to Complex Systems ( World Scientific, Singapore, 2010).
63.
63. L. Danon, A. Díaz-Guilera, J. Duch, and A. Arenas, “ Comparing community structure identification,” J. Stat. Mech. 09, P09008 (2005).
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
64.
64. A. Lancichinetti and S. Fortunato, “ Community detection algorithms: A comparative analysis,” Phys. Rev. E 80, 056117 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.056117
65.
65. S. Fortunato, “ Community detection in graphs,” Phys. Rep. 486, 75174 (2010).
http://dx.doi.org/10.1016/j.physrep.2009.11.002
66.
66. R. Aldecoa and I. Marín, “ Exploring the limits of community detection strategies in complex networks,” Sci. Rep. 3, 2216 (2013).
http://dx.doi.org/10.1038/srep02216
67.
67. M. Rosvall and C. T. Bergstrom, “ Maps of random walks on complex networks reveal community structure,” Proc. Natl. Acad. Sci. U.S.A. 105, 11181123 (2008).
http://dx.doi.org/10.1073/pnas.0706851105
68.
68. S. Fortunato and M. Barthélemy, “ Resolution limit in community detection,” Proc. Natl. Acad. Sci. U.S.A. 104, 3641 (2007).
http://dx.doi.org/10.1073/pnas.0605965104
69.
69. M. Schaub, R. Lambiotte, and M. Barahona, “ Encoding dynamics for multiscale community detection: Markov time sweeping for the map equation,” Phys. Rev. E 86, 026112 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.026112
70.
70. M. E. Newman and M. Girvan, “ Finding and evaluating community structure in networks,” Phys. Rev. E 69, 026113 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.026113
71.
71. G. Paladin and A. Vulpiani, “ Anomalous scaling laws in multifractal objects,” Phys. Rep. 156, 147225 (1987).
http://dx.doi.org/10.1016/0370-1573(87)90110-4
http://aip.metastore.ingenta.com/content/aip/journal/chaos/25/3/10.1063/1.4908231
Loading
/content/aip/journal/chaos/25/3/10.1063/1.4908231
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/25/3/10.1063/1.4908231
2015-02-12
2016-12-07

Abstract

We represent transport between different regions of a fluid domain by flow networks, constructed from the discrete representation of the Perron-Frobenius or transfer operator associated to the fluid advection dynamics. The procedure is useful to analyze fluid dynamics in geophysical contexts, as illustrated by the construction of a flow network associated to the surface circulation in the Mediterranean sea. We use network-theory tools to analyze the flow network and gain insights into transport processes. In particular, we quantitatively relate dispersion and mixing characteristics, classically quantified by Lyapunov exponents, to the degree of the network nodes. A family of network entropies is defined from the network adjacency matrix and related to the statistics of stretching in the fluid, in particular, to the Lyapunov exponent field. Finally, we use a network community detection algorithm, , to partition the Mediterranean network into coherent regions, i.e., areas internally well mixed, but with little fluid interchange between them.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/25/3/1.4908231.html;jsessionid=nbBy6xJsdc72-wBklw8Z1vf1.x-aip-live-06?itemId=/content/aip/journal/chaos/25/3/10.1063/1.4908231&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/25/3/10.1063/1.4908231&pageURL=http://scitation.aip.org/content/aip/journal/chaos/25/3/10.1063/1.4908231'
Right1,Right2,Right3,