Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/25/3/10.1063/1.4914169
1.
1. P. D. Sardeshmukh and P. Sura, J. Clim. 22, 1193 (2009).
http://dx.doi.org/10.1175/2008JCLI2358.1
2.
2. P. Sura and P. D. Sardeshmukh, J. Phys. Oceanogr. 38, 639 (2008).
http://dx.doi.org/10.1175/2007JPO3761.1
3.
3. G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (1930).
http://dx.doi.org/10.1103/PhysRev.36.823
4.
4. C. Penland and P. D. Sardeshmukh, Chaos 22, 023119 (2012).
http://dx.doi.org/10.1063/1.4706504
5.
5. A. J. Majda, C. Franzke, and D. Crommelin, Proc. Natl. Acad. Sci. 106(10), 36493653 (2009).
http://dx.doi.org/10.1073/pnas.0900173106
6.
6. W. Rümelin, SIAM J. Numer. Anal. 19, 604 (1982).
http://dx.doi.org/10.1137/0719041
7.
7. J. A. Hansen and C. Penland, Mon. Weather Rev. 134, 3006 (2006).
http://dx.doi.org/10.1175/MWR3192.1
8.
8. K. Hasselmann, Tellus 28, 473 (1976).
http://dx.doi.org/10.1111/j.2153-3490.1976.tb00696.x
9.
9. P. Sura and P. D. Sardeshmukh, Atmos. Res. 94, 140 (2009).
http://dx.doi.org/10.1016/j.atmosres.2008.08.008
10.
10. C. W. Gardiner, Handbook of Stochastic Methods ( Springer-Verlag, Berlin, 1984).
11.
11. W. Horsthemke and R. Léfèver, Noise Induced Transitions ( Springer-Verlag, Berlin, 1984).
12.
12. B. F. Farrell and P. J. Ioannou, J. Atmos. Sci. 52, 1642 (1995).
http://dx.doi.org/10.1175/1520-0469(1995)052<1642:SDOTMA>2.0.CO;2
13.
13. J. S. Whitaker and P. D. Sardeshmukh, J. Atmos. Sci. 55, 237 (1998).
http://dx.doi.org/10.1175/1520-0469(1998)055<0237:ALTOES>2.0.CO;2
14.
14. M. Newman and P. D. Sardeshmukh, J. Clim. 21, 4326 (2008).
http://dx.doi.org/10.1175/2008JCLI2118.1
15.
15. C. Penland and P. D. Sardeshmukh, J. Clim. 8, 1999 (1995).
http://dx.doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2
16.
16. M. Newman, P. D. Sardeshmukh, and C. Penland, J. Clim. 22, 2958 (2009).
http://dx.doi.org/10.1175/2008JCLI2659.1
17.
17. C. E. Leith, Physica D 98, 481 (1996).
http://dx.doi.org/10.1016/0167-2789(96)00107-8
18.
18. B. F. Farrell and P. J. Ioannou, Phys. Fluids A 5, 2600 (1993).
http://dx.doi.org/10.1063/1.858894
19.
19. D. S. Wilks, Q. J. R. Meteorol. Soc. 131, 389 (2005).
http://dx.doi.org/10.1256/qj.04.03
20.
20. H. M. Arnold, I. M. Moroz, and T. N. Palmer, Philos. Trans. R. Soc., A 371, 20110479 (2013).
http://dx.doi.org/10.1098/rsta.2011.0479
21.
21. J. Berner, G. J. Shutts, M. Leutbecher, and T. N. Palmer., J. Atmos. Sci. 66, 603 (2009).
http://dx.doi.org/10.1175/2008JAS2677.1
22.
22. J. Culina, S. Kravtsov, and A. H. Monahan, J. Atmos. Sci. 68, 284 (2011).
http://dx.doi.org/10.1175/2010JAS3509.1
23.
23. M. F. Jansen and I. M. Held, Ocean Modell. 80, 36 (2014).
http://dx.doi.org/10.1016/j.ocemod.2014.06.002
24.
24. A. Weisheimer, S. Corti, T. N. Palmer, and F. Vitart, Philos. Trans. R. Soc., A 372, 20130290 (2014).
http://dx.doi.org/10.1098/rsta.2013.0290
25.
25. K. Pegion and P. D. Sardeshmukh, Mon. Weather Rev. 139, 3648 (2011).
http://dx.doi.org/10.1175/MWR-D-11-00004.1
26.
26. N. Cavanaugh, T. Allen, A. Subramanian, B. Mapes, H. Seo, and A. J. Miller, Clim. Dyn. 44, 897906 (2015).
http://dx.doi.org/10.1007/s00382-014-2181-x
27.
27. S. Saha et al., J. Clim. 19, 34833517 (2006).
http://dx.doi.org/10.1175/JCLI3812.1
28.
28. L. Zanna, J. Clim. 25, 50475056 (2012).
http://dx.doi.org/10.1175/JCLI-D-11-00539.1
29.
29. M. Newman, J. Clim. 26, 52605269 (2013).
http://dx.doi.org/10.1175/JCLI-D-12-00590.1
30.
30. J. E. Wilkins, Ann. Math. Stat. 15, 333335 (1944).
http://dx.doi.org/10.1214/aoms/1177731243
31.
31. M. Ghil and A. W. Robertson, “Solving problems with GCMs: General circulation models and their role in the climate modeling hierarchy,” in General Circulation Model Development: Past, Present and Future, edited by D. Randall ( Academic Press, 2000), pp. 285325.
http://aip.metastore.ingenta.com/content/aip/journal/chaos/25/3/10.1063/1.4914169
Loading
/content/aip/journal/chaos/25/3/10.1063/1.4914169
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/25/3/10.1063/1.4914169
2015-03-10
2016-09-26

Abstract

The probability distributions of large-scale atmospheric and oceanic variables are generally skewed and heavy-tailed. We argue that their distinctive departures from Gaussianity arise fundamentally from the fact that in a quadratically nonlinear system with a quadratic invariant, the coupling coefficients between system components are not constant but depend linearly on the system state in a distinctive way. In particular, the skewness arises from a tendency of the system trajectory to linger near states of weak coupling. We show that the salient features of the observed non-Gaussianity can be captured in the simplest such nonlinear 2-component system. If the system is stochastically forced and linearly damped, with one component damped much more strongly than the other, then the strongly damped fast component becomes effectively decoupled from the weakly damped slow component, and its impact on the slow component can be approximated as a stochastic noise forcing plus an augmented nonlinear damping. In the limit of large time-scale separation, the nonlinear augmentation of the damping becomes small, and the noise forcing can be approximated as an additive noise plus a correlated additive and multiplicative noise (CAM noise) forcing. Much of the diversity of observed large-scale atmospheric and oceanic probability distributions can be interpreted in this minimal framework.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/25/3/1.4914169.html;jsessionid=k9ubbtYC83Ma1zjdCbF-OdOr.x-aip-live-02?itemId=/content/aip/journal/chaos/25/3/10.1063/1.4914169&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/25/3/10.1063/1.4914169&pageURL=http://scitation.aip.org/content/aip/journal/chaos/25/3/10.1063/1.4914169'
Right1,Right2,Right3,