Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/25/8/10.1063/1.4919784
1.
1. R. Bale, M. Hao, A. P. S. Bhalla, N. Patel, and N. A. Patankar, “ Gray's paradox: A fluid mechanical perspective,” Sci. Rep. 4, 5904 (2014).
http://dx.doi.org/10.1038/srep05904
2.
2. J. O. Dabiri, “ On the estimation of swimming and flying forces from wake measurements,” J. Exp. Biol. 208, 35193532 (2005).
http://dx.doi.org/10.1242/jeb.01813
3.
3. B. P. Epps and A. H. Techet, “ Impulse generated during unsteady maneuvering of swimming fish,” Exp. Fluids 43, 691700 (2007).
http://dx.doi.org/10.1007/s00348-007-0401-4
4.
4. M. Gazzola, P. Chatelain, W. M. van Rees, and P. Koumoutsakos, “ Simulations of single and multiple swimmers with non-divergence free deforming geometries,” J. Comput. Phys. 230, 70937114 (2011).
http://dx.doi.org/10.1016/j.jcp.2011.04.025
5.
5. M. Gazzola, W. M. van Rees, and P. Koumoutsakos, “ C-start: Optimal start of larval fish,” J. Fluid Mech. 698, 518 (2012).
http://dx.doi.org/10.1017/jfm.2011.558
6.
6. M. Gazzola, B. Hejazialhosseini, and P. Koumoutsakos, “ Reinforcement learning and wavelet adapted vortex methods for simulations of self-propelled swimmers,” SIAM J. Sci. Comput. 36(3), B622B639 (2014).
http://dx.doi.org/10.1137/130943078
7.
7. M. A. Green, C. W. Rowley, and A. J. Smits, “ The unsteady three-dimensional wake produced by a trapezoidal pitching panel,” J. Fluid Mech. 685, 117145 (2011).
http://dx.doi.org/10.1017/jfm.2011.286
8.
8. G. Haller, “ A variational theory of hyperbolic Lagrangian coherent structures,” Physica D 240, 574598 (2011).
http://dx.doi.org/10.1016/j.physd.2010.11.010
9.
9. G. Haller, “ Lagrangian coherent structures,” Annu. Rev. Fluid Mech. 47, 137162 (2015).
http://dx.doi.org/10.1146/annurev-fluid-010313-141322
10.
10. G. Haller and G. Yuan, “ Lagrangian coherent structures and mixing in two-dimensional turbulence,” Physica D 147, 352370 (2000).
http://dx.doi.org/10.1016/S0167-2789(00)00142-1
11.
11. G. Haller and F. J. Beron-Vera, “ Coherent Lagrangian vortices: The black holes of turbulence,” J. Fluid Mech. 731, R4 (2013).
http://dx.doi.org/10.1017/jfm.2013.391
12.
12. S. Kern and P. Koumoutsakos, “ Simulations of optimized anguilliform swimming,” J. Exp. Biol. 209, 48414857 (2006).
http://dx.doi.org/10.1242/jeb.02526
13.
13. J. C. Liao, D. N. Beal, G. V. Lauder, and M. S. Triantafyllou, “ Fish exploiting vortices decrease muscle activity,” Science 302, 15661569 (2003).
http://dx.doi.org/10.1126/science.1088295
14.
14. F. Noca, D. Shiels, and D. Jeon, “ Measuring instantaneous fluid dynamic forces on bodies, using only velocity fields and their derivatives,” J. Fluid Struct. 11, 345350 (1997).
http://dx.doi.org/10.1006/jfls.1997.0081
15.
15. K. Onu, F. Huhn, and G. Haller, “ LCS Tool: A computational platform for Lagrangian coherent structures,” J. Comput. Sci. 7, 2636 (2015).
http://dx.doi.org/10.1016/j.jocs.2014.12.002
16.
16. J. Peng, J. O. Dabiri, P. G. Madden, and G. V. Lauder, “ Non-invasive measurement of instantaneous forces during aquatic locomotion: A case study of the bluegill sunfish pectoral fin,” J. Exp. Biol. 210, 685698 (2007).
http://dx.doi.org/10.1242/jeb.02692
17.
17. J. Peng and J. O. Dabiri, “ The ‘upstream wake’ of swimming and flying animals and its correlation with propulsive efficiency,” J. Exp. Biol. 211, 26692677 (2008).
http://dx.doi.org/10.1242/jeb.015883
18.
18. D. Rossinelli, B. Hejazialhosseini, W. M. van Rees, M. Gazzola, M. Bergdorf, and P. Koumoutsakos, “ MRAG-I2D: Multi-resolution adapted grids for vortex methods on multicore architectures,” J. Comput. Phys. 288, 118 (2015).
http://dx.doi.org/10.1016/j.jcp.2015.01.035
19.
19. P. G. Saffman, Vortex Dynamics ( Cambridge University Press, New York, 1992).
20.
20. W. W. Schultz and P. W. Webb, “ Power requirements of swimming: Do new methods resolve old questions?,” Integr. Comp. Biol. 42, 10181025 (2002).
http://dx.doi.org/10.1093/icb/42.5.1018
21.
21. E. D. Tytell and G. V. Lauder, “ Hydrodynamics of the escape response in bluegill sunfish, Lepomis macrochirus,” J. Exp. Biol. 211, 33593369 (2008).
http://dx.doi.org/10.1242/jeb.020917
http://aip.metastore.ingenta.com/content/aip/journal/chaos/25/8/10.1063/1.4919784
Loading
/content/aip/journal/chaos/25/8/10.1063/1.4919784
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/25/8/10.1063/1.4919784
2015-06-23
2016-07-29

Abstract

Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/25/8/1.4919784.html;jsessionid=i6lLLF8TbuLHapYfJ2v1RKdV.x-aip-live-03?itemId=/content/aip/journal/chaos/25/8/10.1063/1.4919784&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/25/8/10.1063/1.4919784&pageURL=http://scitation.aip.org/content/aip/journal/chaos/25/8/10.1063/1.4919784'
Right1,Right2,Right3,