Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/25/9/10.1063/1.4915527
1.
1. H.-D. Gräf, H. L. Harney, H. Lengeler, C. H. Lewenkopf, C. Rangacharyulu, A. Richter, P. Schardt, and H. A. Weidenmüller, Phys. Rev. Lett. 69, 1296 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.1296
2.
2. G. E. Mitchell, A. Richter, and H. A. Weidenmüller, Rev. Mod. Phys. 82, 2845 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.2845
3.
3. M. V. Berry, Eur. J. Phys. 2, 91 (1981).
http://dx.doi.org/10.1088/0143-0807/2/2/006
4.
4. H.-J. Stöckmann, Quantum Chaos: An Introduction ( Cambridge University Press, Cambridge, 2000).
5.
5. O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.1
6.
6. A. Richter, in Emerging Applications of Number Theory, The IMA Volumes in Mathematics and its Applications, edited by D. A. Hejhal, J. Friedmann, M. C. Gutzwiller, and A. M. Odlyzko ( Springer, New York, 1999), Vol. 109, p. 479.
7.
7. F. Haake, Quantum Signatures of Chaos ( Springer-Verlag, Heidelberg, 2001).
8.
8. H.-J. Stöckmann and J. Stein, Phys. Rev. Lett. 64, 2215 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.2215
9.
9. S. Sridhar, Phys. Rev. Lett. 67, 785 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.785
10.
10. J. Stein and H.-J. Stöckmann, Phys. Rev. Lett. 68, 2867 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.2867
11.
11. P. So, S. Anlage, E. Ott, and R. Oerter, Phys. Rev. Lett. 74, 2662 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.2662
12.
12. M. R. Schroeder, J. Audio Eng. Soc. 35, 307 (1987); available at http://www.aes.org/e-lib/browse.cfm?elib=5207.
13.
13. R. L. Weaver, J. Acoust. Soc. Am. 85, 1005 (1989).
http://dx.doi.org/10.1121/1.397484
14.
14. S. Deus, P. Koch, and L. Sirko, Phys. Rev. E 52, 1146 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.1146
15.
15. C. Ellegaard, T. Guhr, K. Lindemann, H. Lorensen, J. Nygård, and M. Oxborrow, Phys. Rev. Lett. 75, 1546 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.1546
16.
16. S. Keshavamurthy and P. Schlagheck, Dynamical Tunneling-Theory and Experiment ( CRC Press, 2011).
17.
17. C. Dembowski, H.-D. Gräf, A. Heine, R. Hofferbert, H. Rehfeld, and A. Richter, Phys. Rev. Lett. 84, 867 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.867
18.
18. A. Bäcker, R. Ketzmerick, S. Löck, M. Robnik, G. Vidmar, R. Höhmann, U. Kuhl, and H.-J. Stöckmann, Phys. Rev. Lett. 100, 174103 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.174103
19.
19. B. Dietz, T. Guhr, B. Gutkin, M. Miski-Oglu, and A. Richter, Phys. Rev. E 90, 022903 (2014).
http://dx.doi.org/10.1103/PhysRevE.90.022903
20.
20. K. Alrutz-Ziemssen, D. Flasche, H. Gräf, V. Huck, K. Hummel, G. Kalisch, C. Lüttge, J. Pinkow, A. Richter, T. Rietdorf, P. Schardt, E. Spamer, A. Staschek, W. Voigt, H. Weise, and W. Ziegler, in Proceedings of the 1990 Linear Accelerator Conference, Albuquerque (1990), p. 626.
21.
21. H. Weyl, J. Reine Angew. Math. 141, 1 (1912); available at https://eudml.org/doc/149369.
22.
22. S. W. McDonald and A. N. Kaufman, Phys. Rev. Lett. 42, 1189 (1979).
http://dx.doi.org/10.1103/PhysRevLett.42.1189
23.
23. G. Casati, F. Valz-Gris, and I. Guarnieri, Lett. Nuovo Cimento 28, 279 (1980).
http://dx.doi.org/10.1007/BF02798790
24.
24. M. Sieber, U. Smilansky, S. C. Creagh, and R. G. Littlejohn, J. Phys. A 26, 6217 (1993).
http://dx.doi.org/10.1088/0305-4470/26/22/022
25.
25. M. L. Mehta, Random Matrices ( Academic Press, London, 1990).
26.
26. L. A. Bunimovich, Commun. Math. Phys. 65, 295 (1979).
http://dx.doi.org/10.1007/BF01197884
27.
27. C. Mahaux and H. A. Weidenmüller, Shell Model Approach to Nuclear Reactions ( North Holland, Amsterdam, 1969).
28.
28. S. Albeverio, F. Haake, P. Kurasov, M. Kuś, and P. Šeba, J. Math. Phys. 37, 4888 (1996).
http://dx.doi.org/10.1063/1.531668
29.
29. F. Beck, C. Dembowski, A. Heine, and A. Richter, Phys. Rev. E 67, 066208 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.066208
30.
30. H. Alt, H. D. Gräf, H. L. Harney, R. Hofferbert, H. Lengeler, A. Richter, P. Schardt, and H. A. Weidenmüller, Phys. Rev. Lett. 74, 62 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.62
31.
31. A. Müller and H. Harney, Z. Phys. A 337, 465 (1990).
http://dx.doi.org/10.1007/BF01294984
32.
32. J. Verbaarschot, H. Weidenmüller, and M. Zirnbauer, Phys. Rep. 129, 367 (1985).
http://dx.doi.org/10.1016/0370-1573(85)90070-5
33.
33. Y. V. Fyodorov, D. V. Savin, and H.-J. Sommers, J. Phys. A 38, 10731 (2005).
http://dx.doi.org/10.1088/0305-4470/38/49/017
34.
34. B. Dietz, T. Friedrich, H. L. Harney, M. Miski-Oglu, A. Richter, F. Schäfer, J. Verbaarschot, and H. A. Weidenmüller, Phys. Rev. Lett. 103, 064101 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.064101
35.
35. S. Kumar, A. Nock, H.-J. Sommers, T. Guhr, B. Dietz, M. Miski-Oglu, A. Richter, and F. Schäfer, Phys. Rev. Lett. 111, 030403 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.030403
36.
36. B. Dietz, T. Friedrich, H. L. Harney, M. Miski-Oglu, A. Richter, F. Schäfer, and H. A. Weidenmüller, Phys. Rev. E 78, 055204 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.055204
37.
37. B. Dietz, T. Friedrich, H. L. Harney, M. Miski-Oglu, A. Richter, F. Schäfer, and H. A. Weidenmüller, Phys. Rev. E 81, 036205 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.036205
38.
38. B. Dietz, H. Harney, A. Richter, F. Schäfer, and H. Weidenmüller, Phys. Lett. B 685, 263 (2010).
http://dx.doi.org/10.1016/j.physletb.2010.01.074
39.
39. B. Dietz, A. Richter, and H. Weidenmüller, Phys. Lett. B 697, 313 (2011).
http://dx.doi.org/10.1016/j.physletb.2011.02.009
40.
40. B. Dietz, T. Friedrich, H. L. Harney, M. Miski-Oglu, A. Richter, F. Schäfer, and H. A. Weidenmüller, Phys. Rev. Lett. 98, 074103 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.074103
41.
41. E. Noether, Nachr. Ges. Wiss. zu Göttingen 1918, 235; available at https://eudml.org/doc/59024.
42.
42. G. Mitchell, E. Bilpuch, P. Endt, and J. Shriner, Phys. Rev. Lett. 61, 1473 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.1473
43.
43. T. Guhr and H. Weidenmüller, Ann. Phys. 199, 412 (1990).
http://dx.doi.org/10.1016/0003-4916(90)90383-Y
44.
44. J. Shriner, Jr., G. Mitchell, and B. Brown, Phys. Rev. C 71, 024313 (2005).
http://dx.doi.org/10.1103/PhysRevC.71.024313
45.
45. N. Rosenzweig and C. Porter, Phys. Rev. 120, 1698 (1960).
http://dx.doi.org/10.1103/PhysRev.120.1698
46.
46. H. Alt, C. I. Barbosa, H.-D. Gräf, T. Guhr, H. L. Harney, R. Hofferbert, H. Rehfeld, and A. Richter, Phys. Rev. Lett. 81, 4847 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4847
47.
47. B. Dietz, T. Guhr, H. L. Harney, and A. Richter, Phys. Rev. Lett. 96, 254101 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.254101
48.
48. D. Leitner, Phys. Rev. E 48, 2536 (1993).
http://dx.doi.org/10.1103/PhysRevE.48.2536
49.
49. C. Dembowski, B. Dietz, T. Friedrich, H.-D. Gräf, H. L. Harney, A. Heine, M. Miski-Oglu, and A. Richter, Phys. Rev. E 71, 046202 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.046202
50.
50. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics ( Springer, 1990).
51.
51. S. Heusler, S. Müller, A. Altland, P. Braun, and F. Haake, Phys. Rev. Lett. 98, 044103 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.044103
52.
52. C. Dembowski, H.-D. Gräf, A. Heine, T. Hesse, H. Rehfeld, and A. Richter, Phys. Rev. Lett. 86, 3284 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3284
53.
53. S. Bittner, E. Bogomolny, B. Dietz, M. Miski-Oglu, P. Oria Iriarte, A. Richter, and F. Schäfer, Phys. Rev. E 81, 066215 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.066215
54.
54. S. Bittner, B. Dietz, R. Dubertrand, J. Isensee, M. Miski-Oglu, and A. Richter, Phys. Rev. E 85, 056203 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.056203
55.
55. S. Bittner, E. Bogomolny, B. Dietz, M. Miski-Oglu, and A. Richter, Phys. Rev. E 85, 026203 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.026203
56.
56. H. Alt, H.-D. Gräf, R. Hofferbert, C. Rangacharyulu, H. Rehfeld, A. Richter, P. Schardt, and A. Wirzba, Phys. Rev. E 54, 2303 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.2303
57.
57. H. Alt, C. Dembowski, H.-D. Gräf, R. Hofferbert, H. Rehfeld, A. Richter, R. Schuhmann, and T. Weiland, Phys. Rev. Lett. 79, 1026 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1026
58.
58. C. Dembowski, B. Dietz, H.-D. Gräf, A. Heine, T. Papenbrock, A. Richter, and C. Richter, Phys. Rev. Lett. 89, 064101 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.064101
59.
59. W. Lukosz, Z. Phys. 262, 327 (1973).
http://dx.doi.org/10.1007/BF01400845
60.
60. R. Balian and B. Duplantier, Ann. Phys. (N.Y.) 104, 300 (1977).
http://dx.doi.org/10.1016/0003-4916(77)90334-7
61.
61. B. Dietz, B. Mößner, T. Papenbrock, U. Reif, and A. Richter, Phys. Rev. E 77, 046221 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.046221
62.
62. T. Papenbrock, Phys. Rev. E 61, 4626 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.4626
63.
63. L. A. Bunimovich and G. Del Magno, Commun. Math. Phys. 262, 17 (2006).
http://dx.doi.org/10.1007/s00220-005-1473-8
64.
64. F. Leyvraz, C. Schmit, and T. H. Seligman, J. Phys. A 29, L575 (1996).
http://dx.doi.org/10.1088/0305-4470/29/22/004
65.
65. B. Dietz, A. Heine, V. Heuveline, and A. Richter, Phys. Rev. E 71, 026703 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.026703
66.
66. C. Dembowski, H.-D. Gräf, A. Heine, H. Rehfeld, A. Richter, and C. Schmit, Phys. Rev. E 62, R4516 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.R4516
67.
67. C. Dembowski, B. Dietz, H.-D. Gräf, A. Heine, F. Leyvraz, M. Miski-Oglu, A. Richter, and T. H. Seligman, Phys. Rev. Lett. 90, 014102 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.014102
68.
68. O. Knill, Elemente Math. 53, 89 (1998).
http://dx.doi.org/10.1007/s000170050038
69.
69. B. Gutkin, J. Phys. A 40, F761 (2007).
http://dx.doi.org/10.1088/1751-8113/40/31/F02
70.
70. F. Dittes, Phys. Rep. 339, 215 (2000).
http://dx.doi.org/10.1016/S0370-1573(00)00065-X
71.
71. R. Hofferbert, H. Alt, C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, H. Rehfeld, and A. Richter, Phys. Rev. E 71, 046201 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.046201
72.
72. O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep. 223, 43 (1993).
http://dx.doi.org/10.1016/0370-1573(93)90109-Q
73.
73. S. Tomsovic and D. Ullmo, Phys. Rev. E 50, 145 (1994).
http://dx.doi.org/10.1103/PhysRevE.50.145
74.
74. L. C. Maier and J. C. Slater, J. Appl. Phys. 23, 78 (1952).
http://dx.doi.org/10.1063/1.1701982
75.
75. E. Yablonovitch and T. J. Gmitter, Phys. Rev. Lett. 63, 1950 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.1950
76.
76. C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).
http://dx.doi.org/10.1103/RevModPhys.80.1337
77.
77. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
78.
78. A. Singha, M. Gibertini, B. Karmakar, S. Yuan, M. Polini, G. Vignale, M. I. Katsnelson, A. Pinczuk, L. N. Pfeiffer, K. W. West, and V. Pellegrini, Science 332, 1176 (2011).
http://dx.doi.org/10.1126/science.1204333
79.
79. L. Nádvorník, M. Orlita, N. A. Goncharuk, L. Smrčka, V. Novák, V. Jurka, K. Hruška, Z. Výborný, Z. R. Wasilewski, M. Potemski, and K. Výborný, New J. Phys. 14, 053002 (2012).
http://dx.doi.org/10.1088/1367-2630/14/5/053002
80.
80. K. K. Gomes, W. Mar, W. Ko, F. Guinea, and H. C. Manoharan, Nature 483, 306 (2012).
http://dx.doi.org/10.1038/nature10941
81.
81. L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Nature 483, 302 (2012).
http://dx.doi.org/10.1038/nature10871
82.
82. T. Uehlinger, G. Jotzu, M. Messer, D. Greif, W. Hofstetter, U. Bissbort, and T. Esslinger, Phys. Rev. Lett. 111, 185307 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.185307
83.
83. S. Bittner, B. Dietz, M. Miski-Oglu, P. Oria Iriarte, A. Richter, and F. Schäfer, Phys. Rev. B 82, 014301 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.014301
84.
84. U. Kuhl, S. Barkhofen, T. Tudorovskiy, H.-J. Stöckmann, T. Hossain, L. de Forges de Parny, and F. Mortessagne, Phys. Rev. B 82, 094308 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.094308
85.
85. E. Sadurni, T. H. Seligman, and F. Mortessagne, New J. Phys. 12, 053014 (2010).
http://dx.doi.org/10.1088/1367-2630/12/5/053014
86.
86. S. Bittner, B. Dietz, M. Miski-Oglu, and A. Richter, Phys. Rev. B 85, 064301 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.064301
87.
87. M. Bellec, U. Kuhl, G. Montambaux, and F. Mortessagne, Phys. Rev. Lett. 110, 033902 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.033902
88.
88. M. C. Rechtsman, J. M. Zeuner, A. Tünnermann, S. Nolte, M. Segev, and A. Szameit, Nat. Photonics 7, 153 (2013).
http://dx.doi.org/10.1038/nphoton.2012.302
89.
89. M. C. Rechtsman, Y. Plotnik, J. M. Zeuner, D. Song, Z. Chen, A. Szameit, and M. Segev, Phys. Rev. Lett. 111, 103901 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.103901
90.
90. A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, Nature Mater. 12, 233 (2013).
http://dx.doi.org/10.1038/nmat3520
91.
91. M. V. Berry and R. J. Mondragon, Proc. R. Soc. London, Ser. A 412, 53 (1987).
http://dx.doi.org/10.1098/rspa.1987.0080
92.
92. L. Huang, Y.-C. Lai, and C. Grebogi, Phys. Rev. E 81, 055203 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.055203
93.
93. L. Huang, Y.-C. Lai, and C. Grebogi, Chaos 21, 013102 (2011).
http://dx.doi.org/10.1063/1.3537814
94.
94. B. Dietz, T. Klaus, M. Miski-Oglu, and A. Richter, Phys. Rev. B 91, 035411 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.035411
95.
95. L. Van Hove, Phys. Rev. 89, 1189 (1953).
http://dx.doi.org/10.1103/PhysRev.89.1189
96.
96. B. Dietz, F. Iachello, M. Miski-Oglu, N. Pietralla, A. Richter, L. von Smekal, and J. Wambach, Phys. Rev. B 88, 104101 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.104101
97.
97. S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, Phys. Rev. B 66, 035412 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.035412
98.
98. J. Wurm, K. Richter, and İ. Adagideli, Phys. Rev. B 84, 075468 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075468
99.
99. B. Dietz, T. Klaus, M. Miski-Oglu, A. Richter, M. Wunderle, and C. Bouazza, “Spectral properties of Dirac billiards at the van Hove singularities” (unpublished).
100.
100. E. Doron, U. Smilansky, and A. Frenkel, Phys. Rev. Lett. 65, 3072 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.3072
101.
101. C. P. Dettmann and O. Georgiou, Physica D 238, 2395 (2009).
http://dx.doi.org/10.1016/j.physd.2009.09.019
102.
102. E. G. Altmann, J. S. Portela, and T. Tél, Rev. Mod. Phys. 85, 869 (2013).
http://dx.doi.org/10.1103/RevModPhys.85.869
103.
103. J.-H. Yeh and S. M. Anlage, Rev. Sc. Instrum. 84, 034706 (2013).
http://dx.doi.org/10.1063/1.4797461
104.
104. T. Kottos and U. Smilansky, Phys. Rev. Lett. 79, 4794 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.4794
105.
105. Z. Pluhař and H. A. Weidenmüller, Phys. Rev. Lett. 110, 034101 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.034101
106.
106. Z. Pluhař and H. A. Weidenmüller, Phys. Rev. Lett. 112, 144102 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.144102
107.
107. M. F. Atiyah and I. M. Singer, Ann. Math. 87, 484 (1968).
http://dx.doi.org/10.2307/1970715
108.
108. M. F. Atiyah and G. B. Segal, Ann. Math. 87, 531 (1968).
http://dx.doi.org/10.2307/1970716
109.
109. M. F. Atiyah and I. M. Singer, Ann. Math. 87, 546 (1968).
http://dx.doi.org/10.2307/1970717
110.
110. J. K. Pachos, A. Hatzinikitas, and M. Stone, Eur. Phys. J. 148, 127 (2007).
http://dx.doi.org/10.1140/epjst/e2007-00232-6
111.
111. H. Kroto, J. Heath, S. O'Brien, R. Curl, and R. Smalley, Nature 318, 162 (1985).
http://dx.doi.org/10.1038/318162a0
http://aip.metastore.ingenta.com/content/aip/journal/chaos/25/9/10.1063/1.4915527
Loading
/content/aip/journal/chaos/25/9/10.1063/1.4915527
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/25/9/10.1063/1.4915527
2015-03-23
2016-09-26

Abstract

Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/25/9/1.4915527.html;jsessionid=jwQWJL_5cK2n72SbkPHTFJc2.x-aip-live-06?itemId=/content/aip/journal/chaos/25/9/10.1063/1.4915527&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/25/9/10.1063/1.4915527&pageURL=http://scitation.aip.org/content/aip/journal/chaos/25/9/10.1063/1.4915527'
Right1,Right2,Right3,