Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/25/9/10.1063/1.4917383
1.
1. T. L. Carroll, L. M. Pecora, and F. J. Rachford, “ Chaotic transients and multiple attractors in spin-wave experiments,” Phys. Rev. Lett. 59, 2891 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.2891
2.
2. L. M. Pecora, “ Derivation and generalization of the Suhl spin-wave instability relations,” Phys. Rev. B 37(10), 5473 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.5473
3.
3. L. M. Pecora and T. L. Carroll, “ Synchronization in chaotic systems,” Phys. Rev. Lett. 64, 821 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.821
4.
4. L. M. Pecora and T. L. Carroll, “ Driving systems with chaotic signals,” Phys. Rev. A 44, 2374 (1991).
http://dx.doi.org/10.1103/PhysRevA.44.2374
5.
5. J.-P. Eckmann and D. Ruelle, “ Ergodic theory of chaos and strange attractors,” Rev. Mod. Phys. 57, 617 (1985).
http://dx.doi.org/10.1103/RevModPhys.57.617
6.
6.We are grateful to E. E. Cawley for suggesting the name (private communication).
7.
7. R. W. Newcomb and S. Sathyan, “ An RC Op-Amp chaos generator,” IEEE Trans. Circuits Syst. 30, 54 (1983).
http://dx.doi.org/10.1109/TCS.1983.1085277
8.
8. R. W. Newcomb and N. El-Leithy, “ Chaos generation using binary hysteresis,” Circuits Syst. Signal Process. 5(3), 321 (1986).
http://dx.doi.org/10.1007/BF01600066
9.
9. I. S. Aranson and N. F. Rul'kov, “ Nontrivial structure of synchronization zones in multidimensional systems,” Phys. Lett. A 139(8), 375 (1989).
http://dx.doi.org/10.1016/0375-9601(89)90581-1
10.
10. A. R. Volkovskii and N. F. Rul'kov, “ Experimental study of bifurcations at the threshold for stochastic locking,” Sov. Tech. Phys. Lett. 15, 249 (1989).
11.
11. V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich, “ Stochastic synchronization of oscillations in dissipative systems,” Radiophys. Quantum Electron. 29(9), 795 (1986).
http://dx.doi.org/10.1007/BF01034476
12.
12. V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich, “ Stochastic synchronization of oscillations in dissipative systems,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 29(9), 1050 (1986).
13.
13. A. S. Pikovskii, “ Synchronization and stochastization of array of self-excited oscillators by external noise,” Radiophys. Quantum Electron. 27(5), 390 (1984).
http://dx.doi.org/10.1007/BF01044784
14.
14. A. Pikovskii, “ On the interaction of strange attractors,” Z. Phys. B 55(2), 149 (1984).
http://dx.doi.org/10.1007/BF01420567
15.
15. H. Fujisaka and T. Yamada, “ Stability theory of synchronized motion in coupled-oscillator systems,” Prog. Theor. Phys. 69(1), 32 (1983).
http://dx.doi.org/10.1143/PTP.69.32
16.
16. H. Fujisaka and T. Yamada, “ Stability theory of synchronized motion in coupled-oscillator systems. IV,” Prog. Theor. Phys. 74, 918 (1985).
http://dx.doi.org/10.1143/PTP.74.918
17.
17. T. Yamada and H. Fujisaka, “ Stability theory of synchronized motion in coupled-oscillator systems. II,” Prog. Theor. Phys. 70, 1240 (1983).
http://dx.doi.org/10.1143/PTP.70.1240
18.
18. T. Yamada and H. Fujisaka, “ Stability theory of synchronized motion in coupled-oscillator systems. III,” Prog. Theor. Phys. 72, 885 (1984).
http://dx.doi.org/10.1143/PTP.72.885
19.
19. T. L. Carroll and L. M. Pecora, “ Cascading synchronized chaotic systems,” Physica D 67, 126 (1993).
http://dx.doi.org/10.1016/0167-2789(93)90201-B
20.
20. T. L. Carroll and L. M. Pecora, “ Synchronizing hyperchaotic volume-preserving map circuits,” IEEE Trans. Syst. Circuits 45(6), 656 (1998).
http://dx.doi.org/10.1109/81.678482
21.
21. J. H. Peng, E. J. Ding, M. Ding et al., “ Synchronizing hyperchaos with a scalar transmitted signal,” Phys. Rev. Lett. 76(6), 904 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.904
22.
22. G. A. Johnson, D. J. Mar, T. L. Carroll et al., “ Synchronization and imposed bifurcations in the presence of large parameter mismatch,” Phys. Rev. Lett. 80(18), 3956 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.3956
23.
23. J. F. Heagy, L. M. Pecora, and T. L. Carroll, “ Short wavelength bifurcations and size instabilities in coupled oscillator systems,” Phys. Rev. Lett. 74(21), 4185 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.4185
24.
24. A. Turing, “ The chemical basis of morphogenesis,” Philos. Trans. B 237, 37 (1952).
http://dx.doi.org/10.1098/rstb.1952.0012
25.
25. L. M. Pecora, “ Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems,” Phys. Rev. E 58(1), 347 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.347
26.
26. A. A. Pikovsky and P. Grassberger, “ Symmetry breaking bifurcation for coupled chaotic attractors,” J. Phys. A 24(19), 4587 (1991).
http://dx.doi.org/10.1088/0305-4470/24/19/022
27.
27. P. Ashwin, J. Buescu, and I. Stewart, “ Bubbling of attractors and synchronization of chaotic oscillators,” Phys. Lett. A 193, 126 (1994).
http://dx.doi.org/10.1016/0375-9601(94)90947-4
28.
28. P. Ashwin, J. Buescu, and I. Stewart, “ From attractor to chaotic saddle: A tale of transverse instability,” Nonlinearity 9, 703 (1994).
http://dx.doi.org/10.1088/0951-7715/9/3/006
29.
29. E. Ott, J. C. Alexander, I. Kan et al., “ The transition to chaotic attractors with riddled basins,” Physica D 76, 384 (1994).
http://dx.doi.org/10.1016/0167-2789(94)90047-7
30.
30. E. Ott and J. C. Sommerer, “ Blowout bifurcations: The occurrence of riddled basins and on-off intermittency,” Phys. Lett. A 188, 39 (1994).
http://dx.doi.org/10.1016/0375-9601(94)90114-7
31.
31. E. Ott, J. C. Sommerer, J. C. Alexander et al., “ Scaling behavior of chaotic systems with riddled basins,” Phys. Rev. Lett. 71, 4134 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.4134
32.
32. E. Ott, private communication.
33.
33. J. F. Heagy, T. L. Carroll, and L. M. Pecora, “ Experimental and numerical evidence for riddled basins in coupled chaotic oscillators,” Phys. Rev. Lett. 73, 3528 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.3528
34.
34. N. Rul'kov, M. M. Sushchik, L. S. Tsimring et al., “ Generalized synchronization of chaos in directionally coupled chaotic systems,” Phys. Rev. E 51, 980 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.980
35.
35. H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, “ Generalized synchronization of chaos: The auxiliary system approach,” Phys. Rev. E 53(5), 4528 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.4528
36.
36. U. Parlitz, L. Junge, and L. Kocarev, “ Subharmonic entrainment of unstable period orbits and generalized synchronization,” Phys. Rev. Lett. 79, 3158 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.3158
37.
37. D. G. Sterling, “ Chaotic synchronization of coupled ergodic maps,” Chaos 11, 29 (2001).
http://dx.doi.org/10.1063/1.1350407
38.
38. T. L. Carroll, “ A simple circuit for demonstrating regular and synchronized chaos,” Am. J. Phys. 63, 377 (1995).
http://dx.doi.org/10.1119/1.17923
39.
39. T. L. Carroll, “ Chaotic systems that are robust to added noise,” Chaos 15, 013901 (2005).
http://dx.doi.org/10.1063/1.1827451
40.
40. M. C. Eguia, M. I. Rabinovich, and H. D. I. Abarbane, “ Information transmission and recovery in neural communications channels,” Phys. Rev. E 62(5), 7111 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.7111
41.
41. P. M. Gade, H. Cerdeira, and R. Ramaswamy, “ Coupled maps on trees,” Phys. Rev. E 52, 2478 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.2478
42.
42. P. M. Gade, “ Synchronization in coupled map lattices with random nonlocal connectivity,” Phys. Rev. E 54, 64 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.64
43.
43. G. Hu, J. Yang, and W. Liu, “ Instability and controllability of linearly coupled oscillators: Eigenvalue analysis,” Phys. Rev. Lett. 80(3), 496 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.496
44.
44. U. Parlitz, “ Estimating model parameters from time series by autosynchronization,” Phys. Rev. Lett. 76(8), 1232 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.1232
45.
45. H. D. I. Abarbanel, D. R. Creveling, and J. M. Jeanne, “ Estimation of parameters in nonlinear systems using balanced synchronization,” Phys. Rev. E 77(1), 14 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.016208
46.
46. H. D. I. Abarbanel, D. R. Creveling, R. Farsian et al., “ Dynamical state and parameter estimation,” SIAM J. Appl. Dyn. Syst. 8(4), 1341 (2009).
http://dx.doi.org/10.1137/090749761
47.
47. H. Abarbanel, Predicting the Future: Completing Models of Observed Complex Systems (Understanding Complex Systems) ( Springer, Berlin, 2013).
48.
48. C. Zhou and J. Kurths, “ Hierarchical synchronization in complex networks with heterogeneous degrees,” Chaos 16, 015104 (2006).
http://dx.doi.org/10.1063/1.2150381
49.
49. C. Allefeld, M. Muller, and J. Kurths, “ Eigenvalue decomposition as a generalized synchronization cluster analysis,” Int. J. Bifurcations Chaos 17, 3493 (2007).
http://dx.doi.org/10.1142/S0218127407019251
50.
50. F. Sorrentino and E. Ott, “ Network synchronization of groups,” Phys. Rev. E 76, 056114 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.056114
51.
51. V. Belykh, G. V. Osipov, V. S. Petrov et al., “ Cluster synchronization in osccillatory networks,” Chaos 18, 037106 (2008).
http://dx.doi.org/10.1063/1.2956986
52.
52. I. Kanter, M. Zigzag, A. Englert et al., “ Synchronization of unidirectional time delay chaotic networks and the greatest common divisor,” Europhys. Lett. 93, 60003 (2011).
http://dx.doi.org/10.1209/0295-5075/93/60003
53.
53. T. Dahms, J. Lehnert, and E. Scholl, “ Cluster and group synchronization in delay-coupled networks,” Phys. Rev. E 86, 016202 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.016202
54.
54. C. Fu, Z. Deng, L. Huang et al., “ Topological control of synchronous patterns in systems of networked chaotic oscillators,” Phys. Rev. E 87(3), 032909 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.032909
55.
55. D. P. Rosin, D. Rontani, and D. J. Gauthier, “ Control of synchronization patterns in neural-like Boolean networks,” Phys. Rev. Lett. 110(10), 104102 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.104102
56.
56. C. Williams, T. Murphy, R. Roy et al., “ Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators,” Phys. Rev. Lett. 110, 064104 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.064104
57.
57. M. Golubisky, I. N. Stewart, and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory ( Springer-Verlag, Berlin, 1988), Vol. II.
58.
58. M. Golubitsky, I. Stewart, and A. Török, “ Patterns of synchrony in coupled cell networks with multiple arrows,” SIAM J. Appl. Dyn. Syst. 4(1), 78 (2005).
http://dx.doi.org/10.1137/040612634
59.
59. L. M. Pecora, F. Sorrentino, A. Hagerstrom et al., “ Cluster synchronization and isolated desynchronization in complex networks with symmetries,” Nat. Commun. 5, 4079 (2014).
60.
60. L. M. Pecora, T. L. Carroll, G. Johnson, and D. Mar, Phys. Rev. E 56(5), 50905100 (1997).
http://dx.doi.org/10.1103/PhysRevE.56.5090
61.
61. K. S. Fink, G. Johnson, T. Carroll, D. Mar, and L. Pecora, Phys. Rev. 61(5), 5080 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.5080
http://aip.metastore.ingenta.com/content/aip/journal/chaos/25/9/10.1063/1.4917383
Loading
/content/aip/journal/chaos/25/9/10.1063/1.4917383
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/25/9/10.1063/1.4917383
2015-04-16
2016-12-10

Abstract

We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/25/9/1.4917383.html;jsessionid=RCmuwWF2DeqvoTmQV1T2Q5Fr.x-aip-live-03?itemId=/content/aip/journal/chaos/25/9/10.1063/1.4917383&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/25/9/10.1063/1.4917383&pageURL=http://scitation.aip.org/content/aip/journal/chaos/25/9/10.1063/1.4917383'
Right1,Right2,Right3,