Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/25/9/10.1063/1.4922973
1.
1. T. Y. Li and J. A. Yorke, “ Period three implies chaos,” Am. Math. Mon. 85, 985992 (1975).
http://dx.doi.org/10.2307/2318254
2.
2. E. Lorenz, “ Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130141 (1963).
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
3.
3. C. Grebogi, E. Ott, and J. A. Yorke, “ Crises, sudden changes in chaotic attractors and chaotic transients,” Physica D 7, 181200 (1983).
http://dx.doi.org/10.1016/0167-2789(83)90126-4
4.
4. H. Kantz and P. Grassberger, “ Repellers, semi-attractors and long-lived chaotic transients,” Physica D 17, 7586 (1985).
http://dx.doi.org/10.1016/0167-2789(85)90135-6
5.
5. Y.-C. Lai and T. Tél, Transient Chaos: Complex Dynamics on Finite Time Scales, Applied Mathematical Sciences Vol. 173 ( Springer, New York, 2011).
6.
6. S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke, “ Fractal basin boundaries,” Physica D 17, 125153 (1985).
http://dx.doi.org/10.1016/0167-2789(85)90001-6
7.
7.For a review see E. Ott and T. Tél, “ Chaotic scattering: An introduction,” Chaos 3, 417426 (1993).
http://dx.doi.org/10.1063/1.165949
8.
8. J. D. Skufca, J. A. Yorke, and B. Eckhardt, “ Edge of chaos in parallel shear flow,” Phys. Rev. Lett. 96, 174101 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.174101
9.
9. J. C. Sommerer, H. C. Ku, and H. E. Gilrath, “ Experimental evidence for chaotic scattering in a fluid wake,” Phys. Rev. Lett. 77, 50555058 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.5055
10.
10. C. Jaffe, S. D. Ross, M. L. Lo, J. Marsden, D. Farrelly, and T. Uzer, “ Statistical theory of asteroid escape rates,” Phys. Rev. Lett. 89, 011101 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.011101
11.
11.For example, R. E. Gillian and G. S. Ezra, “ Transport and turnstiles in multidimensional Hamiltonian mappings for unimolecular fragmentation: Application to van der Waals predissociation,” J. Chem. Phys. 94, 26482668 (1991).
http://dx.doi.org/10.1063/1.459840
12.
12.For example, M. L. Du and J. Delos, “ Effect of closed classical orbits on quantum spectra: Ionization of atoms in a magnetic field. I. Physical picture and calculations,” Phys. Rev. A 38, 18961912 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.1896
13.
13. U. Feudel, S. Kuznetsov, and A. Pikovsky, Strange Nonchaotic Attractors ( World Scientific, Singapore, 2006).
14.
14. F. Ledrappier and L.-S. Young, “ Dimension formula for random transformations,” Commun. Math. Phys. 117, 529548 (1988).
http://dx.doi.org/10.1007/BF01218383
15.
15. F. Ledrappier and L.-S. Young, “ Entropy formula for random transformations,” Probab. Theory Relat. Fields 80, 217240 (1988).
http://dx.doi.org/10.1007/BF00356103
16.
16. L. Yu, E. Ott, and Q. Chen, “ Transition to chaos for random dynamical systems,” Phys. Rev. Lett. 65, 29352938 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.2935
17.
17. I. I. Rypina, F. J. Beron-Vera, M. G. Brown, H. Kocak, M. J. Olascoaga, and I. A. Udovydchenkov, “ On the Lagrangian dynamics of atmospheric zonal jets and the permeability of the stratospheric polar vortex,” J. Atmos. Sci. 64, 35953610 (2007).
http://dx.doi.org/10.1175/JAS4036.1
18.
18. J. F. Lindner, V. Kohar, B. Kia, M. Hippke, J. G. Learned, and W. L. Ditto, “ Strange non-chaotic stars,” Phys. Rev. Lett. 114, 054101 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.054101
19.
19. P. Moskalik, “ Multimode oscillations in classical Cepheids and RR Lyrae-type stars,” Proc. Int. Astron. Union 9(S301), 249256 (2013).
http://dx.doi.org/10.1017/S1743921313014403
20.
20. F. Varosi, T. M. Antonsen, and E. Ott, “ The spectrum of fractal dimensions of passively convected scalar gradients in chaotic fluid flows,” Phys. Fluids A 3, 10171028 (1991).
http://dx.doi.org/10.1063/1.858081
21.
21. J. C. Sommerer and E. Ott, “ Particles floating on a moving fluid: A dynamically comprehensible physical fractal,” Science 259, 335339 (1993).
http://dx.doi.org/10.1126/science.259.5093.335
22.
22. G. Haller and G. Yuan, “ Lagrangian coherent structures in three-dimensional fluid flows,” Physica D 147, 352370 (2000).
http://dx.doi.org/10.1016/S0167-2789(00)00142-1
23.
23. G. A. Voth, G. Haller, and J. P. Gollub, “ Experimental measurements of stretching fields in fluid mixing,” Phys. Rev. Lett. 88, 254501 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.254501
24.
24. M. Mathur, G. Haller, T. Peacock, J. E. Ruppert-Felsot, and H. L. Swinney, “ Uncovering the Lagrangian skeleton of turbulence,” Phys. Rev. Lett. 98, 144502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.144502
25.
25.For example, A. S. Pikovsky, M. G. Rosenblum, G. V. Osipov, and J. Kurths, “ Phase synchronization of chaotic oscillators by external driving,” Physica D 104, 219238 (1997).
http://dx.doi.org/10.1016/S0167-2789(96)00301-6
26.
26. R. Sacksteder and S. Shub, “ Entropy of a differentiable map,” Adv. Math. 28, 181185 (1978).
http://dx.doi.org/10.1016/0001-8708(78)90113-5
27.
27. O. S. Kozlovski, “ An integral formula for topological entropy of C maps,” Erg. Theory Dyn. Syst. 18, 405424 (1998).
http://dx.doi.org/10.1017/S0143385798100391
28.
28. If M is a Riemannian manifold, then it has a canonical volume that is equivalent to Lebesgue measure in appropriate local coordinates. Furthermore, when we treat the derivative of a map as a matrix, or use (small) distances in M, we assume the use of “normal coordinates,” which exist at least for C2 Riemannian manifolds.
29.
29. Though we define expansion entropy only for a particular realization of a stochastic system, we expect that under appropriate hypotheses it has the same value for almost every realization. At a minimum, this should be the case when S is invariant for all realizations of a system forced by an IID process, because in this case the expansion entropy depends only on the tail of the IID process. A suitable setting for the rigorous study of expansion entropy in random systems would be that of Ledrappier and Young.14,15
30.
30. If f is a C map on a compact manifold, and S is the entire manifold, then the limit has been proved to exist.27 More generally, H0 could be defined as the lim sup, as in other definitions of entropy (see Sec. IV).
31.
31. J. Jacobs, E. Ott, and B. R. Hunt, “ Calculating topological entropy for transient chaos with an application to communicating with chaos,” Phys. Rev. E 57, 65776588 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.6577
32.
32. J. Balatoni and A. Rényi, “ Remarks on entropy,” Pub. Math. Inst. Hung. Acad. Sci. 1, 937 (1956). Translated in Selected Papers of A. Rényi (Akadémiai Kiadó, Budapest, 1976), Vol. 1, p. 558.
33.
33. H. G. E. Hentschel and I. Procaccia, “ The infinite number of generalized dimensions of fractals and strange attractors,” Physica D 8, 435444 (1983).
http://dx.doi.org/10.1016/0167-2789(83)90235-X
34.
34. P. Grassberger and I. Procaccia, “ Dimensions and entropies of strange attractors from a fluctuating dynamics approach,” Physica D 13, 3454 (1984).
http://dx.doi.org/10.1016/0167-2789(84)90269-0
35.
35. P. Grassberger and I. Procaccia, “ Estimation of Kolmogorov entropy from a chaotic signal,” Phys. Rev. A 28, 25912593 (1983).
http://dx.doi.org/10.1103/PhysRevA.28.2591
36.
36. B. R. Hunt, E. Ott, and J. A. Yorke, “ Fractal dimensions of chaotic saddles of dynamical systems,” Phys. Rev. E 54, 48194823 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.4819
37.
37. Ya. B. Pesin, “ Lyapunov characteristic exponents and ergodic properties of smooth dynamical systems with an invariant measure,” Dokl. Akad. Nauk SSSR 226, 774777 (1976)
37. Ya. B. Pesin, [Sov. Math. Dokl. 17, 196199 (1976)].
38.
38. C. Robinson, “ What is a chaotic attractor?,” Qual. Theory Dyn. Syst. 7, 227236 (2008).
http://dx.doi.org/10.1007/s12346-008-0013-2
39.
39. B. R. Hunt and E. Ott, “ Fractal properties of robust strange non-chaotic attractors,” Phys. Rev. Lett. 87, 254101 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.254101
40.
40. R. L. Devaney and Z. Nitecki, “ Shift automorphisms in the Hénon mapping,” Commun. Math. Phys. 67, 137146 (1979).
http://dx.doi.org/10.1007/BF01221362
41.
41. R. L. Adler, A. G. Konheim, and M. H. McAndrew, “ Topological entropy,” Trans. Am. Math. Soc. 114, 309319 (1965).
http://dx.doi.org/10.1090/S0002-9947-1965-0175106-9
42.
42. E. I. Dinaburg, “ The relation between topological entropy and metric entropy,” Dokl. Akad. Nauk SSSR 190, 1922 (1970)
42. E. I. Dinaburg, [Sov. Math. Dokl. 11, 1316 (1970)].
43.
43. R. Bowen, “ Entropy for group endomorphisms and homogeneous spaces,” Trans. Am. Math. Soc. 153, 401414 (1971).
http://dx.doi.org/10.1090/S0002-9947-1971-0274707-X
44.
44. R. Bowen, “ Periodic points and measures for axiom A diffeomorphisms,” Trans. Am. Math. Soc. 154, 377397 (1971).
http://dx.doi.org/10.2307/1995452
45.
45. F. Przytycki, “ An upper estimation for topological entropy of diffeomorphisms,” Inv. Math. 59, 205213 (1980).
http://dx.doi.org/10.1007/BF01453234
46.
46. S. Newhouse, “ Entropy and volume,” Erg. Theory Dyn. Syst. 8, 283299 (1988).
http://dx.doi.org/10.1017/S0143385700009469
47.
47. M. Misiurewicz and W. Szlenk, “ Entropy of piecewise monotone mappings,” Stud. Math. 67, 4563 (1980), see https://eudml.org/doc/218304.
48.
48. Y. Yomdin, “ Volume growth and entropy,” Isr. J. Math. 57, 285300 (1987).
http://dx.doi.org/10.1007/BF02766215
49.
49. M. Gromov, “ Entropy, homology and semialgebraic geometry,” Sém. Bourbaki 28, 225240 (1985-6), see https://eudml.org/doc/110064.
50.
50. S. Newhouse and T. Pignataro, “ On the estimation of topological entropy,” J. Stat. Phys. 72, 13311351 (1993).
http://dx.doi.org/10.1007/BF01048189
51.
51. Z. Kovács and T. Tél, “ Thermodynamics of irregular scattering,” Phys. Rev. Lett. 64, 16171620 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.1617
52.
52. Q. Chen, E. Ott, and L. P. Hurd, “ Calculating topological entropies of chaotic dynamical systems,” Phys. Lett. A 156, 4852 (1991).
http://dx.doi.org/10.1016/0375-9601(91)90125-R
53.
53. G. Froyland, O. Junge, and G. Ochs, “ Rigorous computation of topological entropy with respect to a finite partition,” Physica D 154, 6884 (2001); see in particular Remark B.2.
http://dx.doi.org/10.1016/S0167-2789(01)00216-0
54.
54. R. L. Devaney, An Introduction to Chaotic Dynamical Systems ( Addison-Wesley, New York and Reading, 1989).
55.
55. J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacy, “ On Devaney's definition of chaos,” Am. Math. Mon. 99, 332334 (1992).
http://dx.doi.org/10.2307/2324899
56.
56. S. Wiggins, Chaotic Transport in Dynamical Systems, Interdisciplinary Applied Mathematics Series Vol. 2 ( Springer-Verlag, Berlin, 1992).
57.
57. W. Ott and J. Yorke, “ When Lyapunov exponents fail to exist,” Phys. Rev. E 78, 056203 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.056203
58.
58. J. Milnor, “ On the concept of an attractor,” Commun. Math. Phys. 99, 177195 (1985).
http://dx.doi.org/10.1007/BF01212280
http://aip.metastore.ingenta.com/content/aip/journal/chaos/25/9/10.1063/1.4922973
Loading
/content/aip/journal/chaos/25/9/10.1063/1.4922973
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/25/9/10.1063/1.4922973
2015-07-28
2016-08-29

Abstract

In this paper, we propose, discuss, and illustrate a computationally feasible definition of chaos which can be applied very generally to situations that are commonly encountered, including attractors, repellers, and non-periodically forced systems. This definition is based on an entropy-like quantity, which we call “expansion entropy,” and we define chaos as occurring when this quantity is positive. We relate and compare expansion entropy to the well-known concept of topological entropy to which it is equivalent under appropriate conditions. We also present example illustrations, discuss computational implementations, and point out issues arising from attempts at giving definitions of chaos that are not entropy-based.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/25/9/1.4922973.html;jsessionid=Rrl-XVF5sqOdXoetrYdT8ORK.x-aip-live-02?itemId=/content/aip/journal/chaos/25/9/10.1063/1.4922973&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/25/9/10.1063/1.4922973&pageURL=http://scitation.aip.org/content/aip/journal/chaos/25/9/10.1063/1.4922973'
Right1,Right2,Right3,