Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/25/9/10.1063/1.4931570
1.
1. P. S. Laplace, A Philosophical Essay on Probabilities Théorie Analytique des Probabilités, 6th ed. ( Madame Veuve Courcier, Paris, 1820).
2.
2. D. J. Watts and S. H. Strogatz, “ Collective dynamics of 'small-world' networks,” Nature 393, 440 (1998).
http://dx.doi.org/10.1038/30918
3.
3. A.-L. Barabási and R. Albert, “ Emergence of scaling in random networks,” Science 286(5439), 509 (1999).
http://dx.doi.org/10.1126/science.286.5439.509
4.
4. P. W. Anderson, “ More is different,” Science 177(4047), 393 (1972).
http://dx.doi.org/10.1126/science.177.4047.393
5.
5. B. Ø. Palsson, Systems Biology: Properties of Reconstructed Networks ( Cambridge University Press, Cambridge, United Kingdom, 2006).
6.
6.The network systems currently investigated are also significantly different from well-mixed or well-ordered complex systems (think of a gas, a crystal) to which statistical mechanics has been traditionally applied. They are well structured and as such cannot be characterized by few average quantities; and the equivalent to a unit cell would be essentially of the size of the entire system, which in turn leads to the issue of scale. Complexity is ultimately a statement about the dynamics (rather than the structure) of the system, which is nevertheless influenced by structure in such networks.
7.
7. K. Zhang and T. J. Sejnowski, “ A universal scaling law between gray matter and white matter of cerebral cortex,” Proc. Natl. Acad. Sci. U. S. A. 97, 5621 (2000).
http://dx.doi.org/10.1073/pnas.090504197
8.
8. J. C. Sanchez and J. C. Principe, Brain-Machine Interface Engineering ( Morgan & Claypool Publishers, New York, NY, 2007).
9.
9. S. J. Schiff, Neural Control Engineering ( MIT Press, Cambridge, MA, 2012).
10.
10.Thus, this article focuses on the control of networks rather than “network control” as used to refer to distributed control systems that use networks of sensors and actuators to control a system that is not necessarily a network.11
11.
11. J. Baillieul and P. J. Antsaklis, “ Control and communication challenges in networked real-time systems,” Proc. IEEE 95(1), 928 (2007).
http://dx.doi.org/10.1109/JPROC.2006.887290
12.
12. M. E. J. Newman, “ The structure and function of complex networks,” SIAM Rev. 45, 167 (2003).
http://dx.doi.org/10.1137/S003614450342480
13.
13. K. J. Astrom and P. R. Kumar, “ Control: A perspective,” Automatica 50, 3 (2014).
http://dx.doi.org/10.1016/j.automatica.2013.10.012
14.
14. R. E. Kalman, “ Mathematical description of linear dynamical systems,” J. Soc. Ind. Appl. Math., Ser. A 1, 152 (1963).
http://dx.doi.org/10.1137/0301010
15.
15. J. Sun, S. P. Cornelius, W. L. Kath, and A. E. Motter, “ Comment on ‘Controllability of complex networks with nonlinear dynamics’,” e-print arXiv:1108.5739 (2011).
16.
16. G. W. Haynes and H. Hermes, “ Nonlinear controllability via Lie theory,” SIAM J. Control 8, 450 (1970).
http://dx.doi.org/10.1137/0308033
17.
17. H. J. Sussmann and V. Jurdjevic, “ Controllability of nonlinear systems,” J. Differ. Equations 12, 95 (1972).
http://dx.doi.org/10.1016/0022-0396(72)90007-1
18.
18. R. Hermann and A. J. Krener, “ Nonlinear controllability and observability,” IEEE Trans. Automat. Control 22, 728 (1977).
http://dx.doi.org/10.1109/TAC.1977.1101601
19.
19. J. C. Maxwell, “ On governors,” Proc. R. Soc. London 16, 270 (1868).
http://dx.doi.org/10.1098/rspl.1867.0055
20.
20. J. C. Maxwell, “ On reciprocal figures and diagrams of forces,” Philos. Mag. 27, 250 (1864).
http://dx.doi.org/10.1080/14786446408643663
21.
21. S. Meyn, Control Techniques for Complex Networks ( Cambridge University Press, Cambridge, United Kingdom, 2007).
22.
22. F. Bullo, J. Cortés, and S. Martínez, Distributed Control of Robotic Networks ( Princeton University, Princeton, NJ, 2009).
23.
23. H. Su and W. Xiaofan, Pinning Control of Complex Networked Systems ( Springer, Berlin, 2013).
24.
24. D. Lozovanu and S. Pickl, Optimization of Stochastic Discrete Systems and Control on Complex Networks ( Springer, Berlin, 2015).
25.
25. C.-T. Lin, “ Structural controllability,” IEEE Trans. Automat. Control AC-19(3), 201 (1974).
http://dx.doi.org/10.1109/TAC.1974.1100557
26.
26. R. E. Kalman, “ On the general theory of control systems,” in Proceedings of the First IFAC Congress on Automatic Control, Moscow, 1960 (1961), Vol. 1, pp. 481492.
27.
27. K. Murota, Systems Analysis by Graphs and Matroids: Structural Solvability and Controllability, 1st ed. ( Springer, Berlin, 1987).
28.
28. E. F. Camacho and C. Bordons, Model Predictive Control ( Springer, Berlin, 2013).
29.
29. R. Cohen, S. Havlin, and D. ben-Avraham, “ Efficient immunization strategies for computer networks and populations,” Phys. Rev. Lett. 91, 247901 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.247901
30.
30. S. L. Feld, “ Why your friends have more friends than you do,” Am. J. Sociol. 96, 1464 (1991).
http://dx.doi.org/10.1086/229693
31.
31. N. A. Christakis and J. H. Fowler, “ Social network sensors for early detection of contagious outbreaks,” PLoS One 5(9), e12948 (2010).
http://dx.doi.org/10.1371/journal.pone.0012948
32.
32. J. Sun and A. E. Motter, “ Controllability transition and nonlocality in network control,” Phys. Rev. Lett. 110, 208701 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.208701
33.
33. R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods ( SIAM, Philadelphia, PA, 1998).
34.
34. C. Commault, J.-M. Dion, and J. W. van der Woude, “ Characterization of generic properties of linear structured systems for efficient computations,” Kybernetika 38, 503 (2002); available at http://dml.cz/dmlcz/135483.
35.
35. Y. Y. Liu, J. J. Slotine, and A.-L. Barabási, “ Controllability of complex networks,” Nature 473, 167 (2011).
http://dx.doi.org/10.1038/nature10011
36.
36. B. Friedland, “ Controllability index based on conditioning number,” J. Dyn. Syst., Meas., Control 97, 444 (1975).
http://dx.doi.org/10.1115/1.3426963
37.
37. N. J. Cowan, E. J. Chastain, D. A. Vilhena, J. S. Freudenberg, and C. T. Bergstrom, “ Nodal dynamics, not degree distributions, determine the structural controllability of complex networks,” PLoS One 7, e38398 (2012).
http://dx.doi.org/10.1371/journal.pone.0038398
38.
38. J. Sun and A. E. Motter (unpublished).
39.
39. J. Lévine, Analysis and Control of Nonlinear Systems: A Flatness-Based Approach (Springer, Berlin, 2009).
40.
40.Note that the challenge is to steer the trajectory toward a specific different attractor (hence, across different ergodic regions of the phase space). It is not important whether the attractor is a fixed point—it can be periodic or even chaotic since, once the attractor is reached, simple methods can be used to manipulate that dynamics within it.41,42
41.
41. E. M. Bollt, “ Targeting control of chaotic systems,” in Chaos and Bifurcations Control: Theory and Applications, edited by G. Chen, X. Yu, and D. J. Hill ( Springer, Berlin, 2004), pp. 124.
42.
42. E. Ott, C. Grebogi, and J. A. Yorke, “ Controlling chaos,” Phys. Rev. Lett. 64, 1196 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.1196
43.
43. S. P. Cornelius, W. L. Kath, and A. E. Motter, “ Realistic control of network dynamics,” Nat. Commun. 4, 1942 (2013).
http://dx.doi.org/10.1038/ncomms2939
44.
44.It goes without saying that the intersection of the feasible region with the target basin of attraction will generally depend on time of the intervention. A dramatic illustration of this dependence was shown in Ref. 45, where examples were given of extinction cascades in food-web networks that could be prevented entirely by the suppression of species that would otherwise be eventually extinct by the cascade.
45.
45. S. Sahasrabudhe and A. E. Motter, “ Rescuing ecosystems from extinction cascades through compensatory perturbations,” Nat. Commun. 2, 170 (2011).
http://dx.doi.org/10.1038/ncomms1163
46.
46. S. P. Cornelius and A. E. Motter, “ NECO—A scalable algorithm for NEtwork COntrol,” Protoc. Exchange doi:10.1038/protex.2013.063 (2013).
http://dx.doi.org/10.1038/protex.2013.063
47.
47.Incidentally, here is where we take advantage of the sparsity that sets networks apart from other dynamical systems. The approach can be applied to any dynamical system at the estimated computational cost of O(n3.5), but for networks this cost is reduced by a full power of n provided that the number of variables is approximately proportional to the number of nodes and that the average degree remains essentially constant, as is the case in many network models.
48.
48. D. Murrugarra, A. Veliz-Cuba, B. Aguilar, S. Arat, and R. Laubenbacher, “Modeling stochasticity and variability in gene regulatory networks,” EURASIP J. Bioinformat. Syst. Biol. 2012, 5 (2012).
http://dx.doi.org/10.1186/1687-4153-2012-5
49.
49. K. Z. Szalay, R. Nussinov, and P. Csermely, “Attractor structures of signaling networks: Consequences of different conformational barcode dynamics and their relations to network-based drug design,” Mol. Inf. 33, 463 (2014).
http://dx.doi.org/10.1002/minf.201400029
50.
50. D. K. Wells, W. L. Kath, and A. E. Motter, “ Control of stochastic and induced switching in biophysical networks,” Phys. Rev. X 5, 031036 (2015).
http://dx.doi.org/10.1103/PhysRevX.5.031036
51.
51. Z. G. Nicolaou and A. E. Motter, “ Mechanical metamaterials with negative compressibility transitions,” Nature Mater. 11, 608 (2012).
http://dx.doi.org/10.1038/nmat3331
52.
52. I. Mezic, Controllability, Integrability and Ergodicity, Lecture Notes in Control and Information Sciences ( Springer, Berlin, 2003), Vol. 289, p. 213.
53.
53. I. Mezic, “ Controllability of hamiltonian systems with drift: Action-angle variables and ergodic partition,” in Proceedings of the 42nd IEEE Conference on Decision and Control (2003), Vol. 3, pp. 25852592.
54.
54. Y. Yang, J. Wang, and A. E. Motter, “ Network observability transitions,” Phys. Rev. Lett. 109, 258701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.258701
55.
55. Y. Y. Liu, J. J. Slotine, and A.-L. Barabási, “ Observability of complex systems,” Proc. Natl. Acad. Sci. U. S. A. 110, 2460 (2013).
http://dx.doi.org/10.1073/pnas.1215508110
56.
56. A. J. Whalen, S. N. Brennan, T. D. Sauer, and S. J. Schiff, “ Observability and controllability of nonlinear networks: The role of symmetry,” Phys. Rev. X 5, 011005 (2015).
http://dx.doi.org/10.1103/PhysRevX.5.011005
57.
57. P.-A. Noël, C. D. Brummitt, and R. M. D'Souza, “ Controlling self-organizing dynamics on networks using models that self-organized,” Phys. Rev. Lett. 111, 078701 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.078701
58.
58. A. E. Motter, “ Cascade control and defense in complex networks,” Phys. Rev. Lett. 93, 098701 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.098701
59.
59. X. F. Wang and G. Chen, “ Pinning control of scale-free dynamical networks,” Physica A 310(3), 521 (2002).
http://dx.doi.org/10.1016/S0378-4371(02)00772-0
60.
60. L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, “ Cluster synchronization and isolated desynchronization in complex networks with symmetries,” Nat. Commun. 5, 4079 (2014).
http://dx.doi.org/10.1038/ncomms5079
61.
61. A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, “ Spontaneous synchrony in power-grid networks,” Nat. Phys. 9, 191 (2013).
http://dx.doi.org/10.1038/nphys2535
62.
62. Y. Tang, F. Qian, H. Gao, and J. Kurths, “ Synchronization in complex networks and its application—A survey of recent advances and challenges,” Annu. Rev. Control 38, 184 (2014).
http://dx.doi.org/10.1016/j.arcontrol.2014.09.003
63.
63. F. Sorrentino, M. di Bernardo, F. Garofalo, and G. Chen, “ Controllability of complex networks via pinning,” Phys. Rev. E 75, 046103 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.046103
64.
64. M. Porfiri and F. Fiorilli, “ Node-to-node pinning control of complex networks,” Chaos 19, 013122 (2009).
http://dx.doi.org/10.1063/1.3080192
65.
65. W. Yu, G. Chen, J. Lu, and J. Kurths, “ Synchronization via pinning control on general complex networks,” SIAM J. Control Optim. 51(2), 1395 (2013).
http://dx.doi.org/10.1137/100781699
66.
66. N. R. Sandell, P. Varaiya, M. Athans, and M. G. Safonov, “ Survey of decentralized control methods for large scale systems,” IEEE Trans. Autom. Control 23, 108 (1978).
http://dx.doi.org/10.1109/TAC.1978.1101704
67.
67. D. D. Šiljak, Decentralized Control of Complex Systems ( Dover, Mineola, NY, 2012; first published by Academic Press Inc., Boston, MA, 1991).
68.
68. R. D'Andrea and G. E. Dullerud, “ Distributed control design for spatially interconnected systems,” IEEE Trans. Autom. Control 48, 1478 (2003).
http://dx.doi.org/10.1109/TAC.2003.816954
69.
69. P. Benner, “ Solving large-scale control problems,” IEEE Control Syst. Mag. 24(1), 44 (2004).
http://dx.doi.org/10.1109/MCS.2004.1272745
70.
70. D. D. Šiljak and A. I. Zečević, “ Control of large-scale systems: Beyond decentralized feedback,” Annu. Rev. Control 29, 169 (2005).
http://dx.doi.org/10.1016/j.arcontrol.2005.08.003
71.
71. B. Jakubczyk, Introduction to Geometric Nonlinear Control: Controllability and Lie Bracket ( ICTP Lecture Notes, Trieste, 2001).
72.
72. A. Isidori, Nonlinear Control Systems, 3rd ed. ( Springer, Berlin, 1995).
http://aip.metastore.ingenta.com/content/aip/journal/chaos/25/9/10.1063/1.4931570
Loading
/content/aip/journal/chaos/25/9/10.1063/1.4931570
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/25/9/10.1063/1.4931570
2015-09-30
2016-12-06

Abstract

An increasing number of complex systems are now modeled as networks of coupled dynamical entities. Nonlinearity and high-dimensionality are hallmarks of the dynamics of such networks but have generally been regarded as obstacles to control. Here, I discuss recent advances on mathematical and computational approaches to control high-dimensional nonlinear network dynamics under general constraints on the admissible interventions. I also discuss the potential of network control to address pressing scientific problems in various disciplines.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/25/9/1.4931570.html;jsessionid=O7jAjqeeazcS2gnfEu2tioIx.x-aip-live-02?itemId=/content/aip/journal/chaos/25/9/10.1063/1.4931570&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/25/9/10.1063/1.4931570&pageURL=http://scitation.aip.org/content/aip/journal/chaos/25/9/10.1063/1.4931570'
Right1,Right2,Right3,