Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. Walker, “ Drops of liquid can be made to float on the liquid. What enables them to do so?,” Sci. Am. 238(6), 151158 (1978).
T. B. Benjamin and F. Ursell, “ The stability of the plane free surface of a liquid in vertical periodic motion,” Proc. R. Soc. A 225, 505515 (1954).
K. Kumar, “ Linear theory of Faraday instability in viscous fluids,” Proc. R. Soc. A 452, 11131126 (1996).
Y. Couder, S. Protière, E. Fort, and A. Boudaoud, “ Dynamical phenomena: Walking and orbiting droplets,” Nature 437, 208 (2005).
S. Protière, A. Boudaoud, and Y. Couder, “ Particle-wave association on a fluid interface,” J. Fluid Mech. 554, 85108 (2006).
A. Eddi, E. Fort, F. Moisy, and Y. Couder, “ Unpredictable tunneling of a classical wave-particle association,” Phys. Rev. Lett. 102, 240401 (2009).
Y. Couder and E. Fort, “ Single-particle diffraction and interference at a macroscopic scale,” Phys. Rev. Lett. 97, 154101 (2006).
A. Andersen, J. Madsen, C. Reichelt, S. Ahl, B. Lautrup, C. Ellegaard, M. Levinsen, and T. Bohr, “ Double-slit experiment with single wave-driven particles and its relation to quantum mechanics,” Phys. Rev. E 92, 14 (2015).
D. M. Harris, J. Moukhtar, E. Fort, Y. Couder, and J. W. M. Bush, “ Wavelike statistics from pilot-wave dynamics in a circular corral,” Phys. Rev. E 88, 011001 (2013).
T. Gilet, “ Dynamics and statistics of wave-particle interactions in a confined geometry,” Phys. Rev. E 90, 052917 (2014).
T. Gilet, “ Quantumlike statistics of deterministic wave-particle interactions in a circular cavity,” Phys. Rev. E 93, 042202 (2016).
J. W. M. Bush, “ Pilot-wave hydrodynamics,” Annu. Rev. Fluid Mech. 47, 269292 (2015).
J. W. M. Bush, “ The new wave of pilot-wave theory,” Phys. Today 68(8), 47 (2015).
E. Fort, A. Eddi, A. Boudaoud, J. Moukhtar, and Y. Couder, “ Path-memory induced quantization of classical orbits,” Proc. Natl. Acad. Sci. U.S.A. 107, 1751517520 (2010).
D. M. Harris and J. W. M. Bush, “ Droplets walking in a rotating frame: From quantized orbits to multimodal statistics,” J. Fluid Mech. 739, 444464 (2014).
A. U. Oza, R. R. Rosales, and J. W. M. Bush, “ A trajectory equation for walking droplets: Hydrodynamic pilot-wave theory,” J. Fluid Mech. 737, 552570 (2013).
A. U. Oza, Ø. Wind-Willassen, D. M. Harris, R. R. Rosales, and J. W. M. Bush, “ Pilot-wave hydrodynamics in a rotating frame: Exotic orbits,” Phys. Fluids 26, 082101 (2014).
S. Perrard, M. Labousse, M. Miskin, E. Fort, and Y. Couder, “ Self-organization into quantized eigenstates of a classical wave-driven particle,” Nat. Commun. 5, 3219 (2014).
M. Labousse, A. U. Oza, S. Perrard, and J. W. M. Bush, “ Pilot-wave dynamics in a harmonic potential: Quantization and stability of circular orbits,” Phys. Rev. E 93, 033122 (2016).
J. Moláček and J. W. M. Bush, “ Drops bouncing on a vibrating bath,” J. Fluid Mech. 727, 582611 (2013).
J. Moláček and J. W. M. Bush, “ Drops walking on a vibrating bath: Towards a hydrodynamic pilot-wave theory,” J. Fluid Mech. 727, 612647 (2013).
P. Milewski, C. Galeano-Rios, A. Nachbin, and J. W. M. Bush, “ Faraday pilot-wave dynamics: Modelling and computation,” J. Fluid Mech. 778, 361388 (2015).
F. Blanchette, “ Modeling the vertical motion of drops bouncing on a bounded fluid reservoir,” Phys. Fluids 28, 032104 (2016).
A. U. Oza, E. Siéfert, D. M. Harris, J. Moláček, and J. W. M. Bush, “ Orbiting pairs of walking droplets,” (submitted).
A. Rahman and D. Blackmore, “ Neimark-Sacker bifurcations and evidence of chaos in a discrete dynamical model of walkers,” Chaos, Solitons Fractals 91, 339349 (2016).
A. U. Oza, D. M. Harris, R. R. Rosales, and J. W. M. Bush, “ Pilot-wave dynamics in a rotating frame: On the emergence of orbital quantization,” J. Fluid Mech. 744, 404429 (2014).
M. Labousse and S. Perrard, “ Non-Hamiltonian features of a classical pilot-wave dynamics,” Phys. Rev. E 90, 022913 (2014).
A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, and Y. Couder, “ Information stored in Faraday waves: The origin of path memory,” J. Fluid Mech. 675, 433463 (2011).
D. M. Harris, “ The pilot-wave dynamics of walking droplets in confinement,” Ph.D. thesis, Massachusetts Institute of Technology, Department of Mathematics, 2015.
S. Perrard, M. Labousse, E. Fort, and Y. Couder, “ Chaos driven by interfering memory,” Phys. Rev. Lett. 113, 104101 (2014).
S. Perrard, “ A wave-mediated memory: Eigenstates, chaos and probabilities,” Ph.D. thesis, Université Paris Diderot, 2014.
D. Ruelle and F. Takens, “ On the nature of turbulence,” Commun. Math. Phys. 20, 167192 (1971).
S. Newhouse, D. Ruelle, and F. Takens, “ Occurrence of strange axiom A attractors near quasi periodic flows on ,” Commun. Math. Phys. 64, 3540 (1978).
J.-P. Eckmann, “ Roads to turbulence in dissipative dynamical systems,” Rev. Mod. Phys. 53, 643 (1981).
M. Labousse, “ Etude d'une dynamique à mémoire de chemin: une expérimentation théorique,” Ph.D. thesis, Université Pierre et Marie Curie-Paris VI, 2014.
J. Gollub and S. Benson, “ Many routes to turbulent convection,” J. Fluid Mech. 100, 449470 (1980).
J. P. Gollub and H. L. Swinney, “ Onset of turbulence in a rotating fluid,” Phys. Rev. Lett. 35, 927 (1975).
A. Guzmán and C. Amon, “ Transition to chaos in converging–diverging channel flows: Ruelle–Takens–Newhouse scenario,” Phys. Fluids 6, 19942002 (1994).
D. M. Harris and J. W. Bush, “ Generating uniaxial vibration with an electrodynamic shaker and external air bearing,” J. Sound Vib. 334, 255269 (2015).
M. C. Gutzwiller, “ Periodic orbits and classical quantization conditions,” J. Math. Phys. 12, 343358 (1971).

Data & Media loading...


Article metrics loading...



We present the results of a numerical investigation of the emergence of chaos in the orbital dynamics of droplets walking on a vertically vibrating fluid bath and acted upon by one of the three different external forces, specifically, Coriolis, Coulomb, or linear spring forces. As the vibrational forcing of the bath is increased progressively, circular orbits destabilize into wobbling orbits and eventually chaotic trajectories. We demonstrate that the route to chaos depends on the form of the external force. When acted upon by Coriolis or Coulomb forces, the droplet's orbital motion becomes chaotic through a period-doubling cascade. In the presence of a central harmonic potential, the transition to chaos follows a path reminiscent of the Ruelle-Takens-Newhouse scenario.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd