Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/26/2/10.1063/1.4940236
1.
1. E. G. D. Cohen, “ Boltzmann and statistical mechanics,” in Boltzmann's Legacy 150 Years After His Birth, Atti dei Convegni Lincei ( Accademia Nazionale dei Lincei, Rome, 1997), Vol. 131, pp. 923; available at http://arXiv.org/abs/cond-mat/9608054v2.
2.
2. J. H. Cochrane, Asset Pricing ( Princeton University Press, 2001).
3.
3. C. Huygens, De ratiociniis in ludo aleae (On reckoning at Games of Chance) ( T. Woodward, London, 1657).
4.
4. P. S. Laplace, Théorie analytique des probabilités, 2nd ed. ( Ve. Courcier, Paris, 1814).
5.
5. D. Bernoulli, Specimen Theoriae Novae de Mensura Sortis, Translation (“Exposition of a new theory on the measurement of risk” by L. Sommer (1954)), Econometrica 22, 2336 (1738).
http://dx.doi.org/10.2307/1909829
6.
6. K. Menger, “ Das Unsicherheitsmoment in der Wertlehre,” J. Econ. 5, 459485 (1934).
http://dx.doi.org/10.1007/BF01311578
7.
7. O. Peters, “ Optimal leverage from non-ergodicity,” Quant. Finance 11, 15931602 (2011).
http://dx.doi.org/10.1080/14697688.2010.513338
8.
8. O. Peters, “ The time resolution of the St Petersburg paradox,” Philos. Trans. R. Soc. London, Ser. A 369, 49134931 (2011).
http://dx.doi.org/10.1098/rsta.2011.0065
9.
9. O. Peters and A. Adamou, “ Stochastic market efficiency,” preprint arXiv:1101.4548 (2011). URL http://arxiv.org/abs/1101.4548.
10.
10. M. Gell-Mann and J. B. Hartle, “ Decoherent histories quantum mechanics with one real fine-grained history,” Phys. Rev. A 85, 062120 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.062120
11.
11. T. Tao, Topics in Random Matrix Theory ( American Mathematical Society, 2012).
12.
12. M. Buchanan, “ Gamble with time,” Nat. Phys. 9, 3 (2013).
http://dx.doi.org/10.1038/nphys2520
13.
13. V. Yakovenko and J. Rosser, “ Colloquium: Statistical mechanics of money, wealth, and income,” Rev. Mod. Phys. 81, 17031725 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.1703
14.
14. H. Morowitz, Beginnings of Cellular Life ( Yale University Press, 1992).
15.
15. O. Peters and A. Adamou, “ The evolutionary advantage of cooperation,” preprint arXiv:1506.03414 (2015). URL http://arxiv.org/abs/1506.03414.
16.
16. H. Chernoff and L. E. Moses, Elementary Decision Theory ( John Wiley & Sons, 1959).
17.
17. S. Redner, “ Random multiplicative processes: An elementary tutorial,” Am. J. Phys. 58, 267273 (1990).
http://dx.doi.org/10.1119/1.16497
18.
18. O. Peters, Menger 1934 revisited, preprint arXiv:1110.1578 (2011). URL http://arxiv.org/abs/1110.1578.
19.
19. P. Fermat and B. Pascal, private communication (1654).
20.
20. P. R. Montmort, Essay d'analyse sur les jeux de hazard, 2nd ed. ( Jacque Quillau, Paris, 1713) (Reprinted by the American Mathematical Society, 2006).
21.
21. O. Peters and W. Klein, “ Ergodicity breaking in geometric Brownian motion,” Phys. Rev. Lett. 110, 100603 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.100603
22.
22. G. I. Barenblatt, Scaling ( Cambridge University Press, 2003).
23.
23. I. Todhunter, A History of the Mathematical Theory of Probability ( Macmillan & Co., 1865).
24.
24. J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior ( Princeton University Press, 1944).
25.
25. P. A. Samuelson, Foundations of Economic Analysis, enlarged edition ( Harvard University Press, 1983).
26.
26. J. L. Coolidge, An Introduction to Mathematical Probability ( Oxford University Press, 1925).
27.
27. J. L. Kelly, Jr., “ A new interpretation of information rate,” Bell Syst. Tech. J. 35, 917926 (1956).
http://dx.doi.org/10.1002/j.1538-7305.1956.tb03809.x
28.
28. T. M. Cover and J. A. Thomas, Elements of Information Theory ( John Wiley & Sons, 1991).
29.
29. K. Arrow, “ The use of unbounded utility functions in expected-utility maximization: Response,” Q. J. Econ. 88, 136138 (1974).
http://dx.doi.org/10.2307/1881800
http://aip.metastore.ingenta.com/content/aip/journal/chaos/26/2/10.1063/1.4940236
Loading
/content/aip/journal/chaos/26/2/10.1063/1.4940236
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/26/2/10.1063/1.4940236
2016-02-02
2016-07-25

Abstract

Gambles are random variables that model possible changes in wealth. Classic decision theory transforms money into utility through a utility function and defines the value of a gamble as the expectation value of utility changes. Utility functions aim to capture individual psychological characteristics, but their generality limits predictive power. Expectation value maximizers are defined as rational in economics, but expectation values are only meaningful in the presence of ensembles or in systems with ergodic properties, whereas decision-makers have no access to ensembles, and the variables representing wealth in the usual growth models do not have the relevant ergodic properties. Simultaneously addressing the shortcomings of utility and those of expectations, we propose to evaluate gambles by averaging wealth growth over time. No utility function is needed, but a dynamic must be specified to compute time averages. Linear and logarithmic “utility functions” appear as transformations that generate ergodic observables for purely additive and purely multiplicative dynamics, respectively. We highlight inconsistencies throughout the development of decision theory, whose correction clarifies that our perspective is legitimate. These invalidate a commonly cited argument for bounded utility functions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/26/2/1.4940236.html;jsessionid=jILk6LfAR9UrpKPoj9dXcr0c.x-aip-live-02?itemId=/content/aip/journal/chaos/26/2/10.1063/1.4940236&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/26/2/10.1063/1.4940236&pageURL=http://scitation.aip.org/content/aip/journal/chaos/26/2/10.1063/1.4940236'
Right1,Right2,Right3,