Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/26/5/10.1063/1.4949012
1.
C. S. Pittendrigh and S. Daan, J. Comp. Physiol., A 106, 223 (1976).
http://dx.doi.org/10.1007/BF01417856
2.
C. S. Pittendrigh, Annu. Rev. Physiol. 55, 16 (1993).
http://dx.doi.org/10.1146/annurev.ph.55.030193.000313
3.
R. Refinetti, Circadian Physiology ( CRC Press, 2006).
4.
D. K. Welsh, J. S. Takahashi, and S. A. Kay, Annu. Rev. Physiol. 72, 551 (2010).
http://dx.doi.org/10.1146/annurev-physiol-021909-135919
5.
D. K. Welsh, D. E. Logothetis, M. Meister, and S. M. Reppert, Neuron 14, 697 (1995).
http://dx.doi.org/10.1016/0896-6273(95)90214-7
6.
S. Honma, W. Nakamura, T. Shirakawa, and K. Honma, Neurosci. Lett. 358, 173 (2004).
http://dx.doi.org/10.1016/j.neulet.2004.01.022
7.
S. Yamaguchi, H. Isejima, T. Matsuo, R. Okura, K. Yagita, M. Kobayashi, and H. Okamura, Science 302, 1408 (2003).
http://dx.doi.org/10.1126/science.1089287
8.
C. A. Czeisler et al., Science 284, 2177 (1999).
http://dx.doi.org/10.1126/science.284.5423.2177
9.
H. Daido, Phys. Rev. Lett. 87, 048101 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.048101
10.
U. Abraham et al., Mol. Syst. Biol. 6, 438 (2010).
http://dx.doi.org/10.1038/msb.2010.92
11.
R. Silver and W. J. Schwartz, Methods Enzymol. 393, 451 (2005).
http://dx.doi.org/10.1016/S0076-6879(05)93022-X
12.
H. S. Lee, J. L. Nelms, M. Nguyen, R. Silver, and M. N. Lehman, Nat. Neurosci. 6, 111 (2003).
http://dx.doi.org/10.1038/nn1006
13.
J. H. Rohling, H. T. vanderLeest, S. Michel, M. J. Vansteensel, and J. H. Meijer, PLoS One 6, e25437 (2011).
http://dx.doi.org/10.1371/journal.pone.0025437
14.
C. Gu, A. Ramkisoensing, Z. Liu, J. H. Meijer, and J. H. Rohling, J. Biol. Rhythms 29, 16 (2014).
http://dx.doi.org/10.1177/0748730413516752
15.
T. Noguchi, K. Watanabe, A. Ogura, and S. Yamaoka, Eur. J. Neurosci. 20, 3199 (2004).
http://dx.doi.org/10.1111/j.1460-9568.2004.03784.x
16.
S. J. Aton, C. S. Colwell, A. J. Harmar, J. Waschek, and E. D. Herzog, Nat. Neurosci. 8, 476 (2005).
http://dx.doi.org/10.1038/nn1419
17.
L. P. Morin, J. Biol. Rhythms 22, 3 (2007).
http://dx.doi.org/10.1177/0748730406296749
18.
H. Albus, M. J. Vansteensel, S. Michel, G. D. Block, and J. H. Meijer, Curr. Biol. 15, 886 (2005).
http://dx.doi.org/10.1016/j.cub.2005.03.051
19.
P. K. Leak, J. P. Card, and R. Y. Moore, Brain Res. 819, 23 (1999).
http://dx.doi.org/10.1016/S0006-8993(98)01317-1
20.
D. Gonze, S. Bernard, C. Waltermann, A. Kramer, and H. Herzel, Biophys. J. 89, 120 (2005).
http://dx.doi.org/10.1529/biophysj.104.058388
21.
C. Gu, J. Wang, and Z. Liu, Phys. Rev. E 80, 030904 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.030904
22.
C. Gu, X. Liang, H. Yang, and J. H. T. Rohling, Sci. Rep. 6, 21412 (2016).
http://dx.doi.org/10.1038/srep21412
23.
C. Gu, J. H. T. Rohling, X. Liang, and H. Yang, Phys. Rev. E 93, 032414 (2016).
http://dx.doi.org/10.1103/PhysRevE.93.032414
24.
N. Komin, A. Murza, E. Hernendez-Garcia, and R. Toral, J. R. Soc. Interface Focus 1, 167 (2011).
http://dx.doi.org/10.1098/rsfs.2010.0327
25.
C. Gu, Z. Liu, W. J. Schwartz, and P. Indic, PLoS One 7, e36900 (2012).
http://dx.doi.org/10.1371/journal.pone.0036900
26.
J. Xu, C. Gu, A. Pumir, N. Garnier, and Z. Liu, Phys. Rev. E 86, 041903 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.041903
27.
C. Gu, J. Xu, Z. Liu, and J. H. T. Rohling, Phys. Rev. E 88, 022702 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.022702
28.
C. Vasalou, E. D. Herzog, and M. A. Henson, J. Biol. Rhythms 24, 243 (2009).
http://dx.doi.org/10.1177/0748730409333220
29.
M. Hafner, H. Koeppl, and D. Gonze, PLoS Comput. Biol. 8, e1002419 (2012).
http://dx.doi.org/10.1371/journal.pcbi.1002419
30.
C. Bodenstein, M. Gosak, S. Schuster, M. Marhl, and M. Perc, PLoS Comput. Biol. 8, e1002697 (2012).
http://dx.doi.org/10.1371/journal.pcbi.1002697
31.
J. C. Locke, P. O. Westermark, A. Kramer, and H. Herzel, BMC Syst. Biol. 2, 22 (2008).
http://dx.doi.org/10.1186/1752-0509-2-22
32.
C. Gu, J. Wang, and Z. Liu, Phys. Rev. E 83, 046224 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.046224
33.
C. Gu, J. Xu, J. Rohling, H. Yang, and Z. Liu, PLoS One 10, e0145360 (2015).
http://dx.doi.org/10.1371/journal.pone.0145360
34.
D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).
http://dx.doi.org/10.1038/30918
35.
P. Erdös and A. Rényi, Publ. Math. Debrecen 6, 290 (1959).
36.
A. L. Barabási and R. Albert, Science 286, 509 (1999).
http://dx.doi.org/10.1126/science.286.5439.509
37.
J. Guckenheimer and P. Holmes, Nonlinear Oscillators, Dynamical Systems, and Bifurcations of Vector Fields ( Springer-Verlag, 1983).
38.
P. Hagmann et al., PLoS Biol. 6, e159 (2008).
http://dx.doi.org/10.1371/journal.pbio.0060159
39.
O. Sporns, Networks of the Brain ( MIT Press, 2010).
40.
S. Farajnia et al., J. Neurosci. 32, 5891 (2012).
http://dx.doi.org/10.1523/JNEUROSCI.0469-12.2012
http://aip.metastore.ingenta.com/content/aip/journal/chaos/26/5/10.1063/1.4949012
Loading
/content/aip/journal/chaos/26/5/10.1063/1.4949012
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/26/5/10.1063/1.4949012
2016-05-31
2016-09-29

Abstract

In mammals, the master clock is located in the suprachiasmatic nucleus (SCN), which is composed of about 20 000 nonidentical neuronal oscillators expressing different intrinsic periods. These neurons are coupled through neurotransmitters to form a network consisting of two subgroups, i.e., a ventrolateral (VL) subgroup and a dorsomedial (DM) subgroup. The VL contains about 25% SCN neurons that receive photic input from the retina, and the DM comprises the remaining 75% SCN neurons which are coupled to the VL. The synapses from the VL to the DM are evidently denser than that from the DM to the VL, in which the VL dominates the DM. Therefore, the SCN is a heterogeneous network where the neurons of the VL are linked with a large number of SCN neurons. In the present study, we mimicked the SCN network based on Goodwin model considering four types of networks including an all-to-all network, a Newman-Watts (NW) small world network, an Erdös-Rényi (ER) random network, and a Barabási-Albert (BA) scale free network. We found that the circadian rhythm was induced in the BA, ER, and NW networks, while the circadian rhythm was absent in the all-to-all network with weak cellular coupling, where the amplitude of the circadian rhythm is largest in the BA network which is most heterogeneous in the network structure. Our finding provides an alternative explanation for the induction or enhancement of circadian rhythm by the heterogeneity of the network structure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/26/5/1.4949012.html;jsessionid=QP4i_WkGzRTRLF8l2hMXpWwa.x-aip-live-02?itemId=/content/aip/journal/chaos/26/5/10.1063/1.4949012&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/26/5/10.1063/1.4949012&pageURL=http://scitation.aip.org/content/aip/journal/chaos/26/5/10.1063/1.4949012'
Right1,Right2,Right3,