Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/26/5/10.1063/1.4951720
1.
M. R. Allshouse and J. L. Thiffeault, “ Detecting coherent structures using braids,” Physica D 241, 95105 (2012).
http://dx.doi.org/10.1016/j.physd.2011.10.002
2.
J. K. Beem, P. L. Ehrlich, and L. E. Kevin, Global Lorentzian Geometry ( CRC Press, 1996).
3.
F. J. Beron-Vera, Y. Wang, M. J. Olascoaga, G. J. Goni, and G. Haller, “ Objective detection of oceanic eddies and the Agulhas leakage,” J. Phys. Oceanogr. 43, 14261438 (2013).
http://dx.doi.org/10.1175/JPO-D-12-0171.1
4.
G. Boffetta, G. Lacorata, G. Redaelli, and A. Vulpiani, “ Detecting barriers to transport: A review of different techniques,” Physica D 159, 5870 (2001).
http://dx.doi.org/10.1016/S0167-2789(01)00330-X
5.
M. Budišić and I. Mezić, “ Geometry of the ergodic quotient reveals coherent structures in flows,” Physica D 241, 12551269 (2012).
http://dx.doi.org/10.1016/j.physd.2012.04.006
6.
P. Chakraborty, S. Balachandar, and R. J. Adrian, “ On the relationships between local vortex identification schemes,” J. Fluid Mech. 535, 189214 (2005).
http://dx.doi.org/10.1017/S0022112005004726
7.
T. Delmarcelle, “ The visualization of second-order tensor fields,” Ph.D. thesis (Stanford University, CA, 1994).
8.
T. Delmarcelle and L. Hesselink, “ The topology of symmetric, second-order tensor fields,” in Proceedings of the Conference on Visualization'94 (IEEE Computer Society Press, 1994), pp. 140147.
9.
G. F. D. Duff, “ Limit-cycles and rotated vector fields,” Ann. Math. Second Series 57(1), 1531 (1953).
http://dx.doi.org/10.2307/1969724
10.
M. Farazmand, D. Blazevski, and G. Haller, “ Shearless transport barriers in unsteady two-dimensional flows and maps,” Physica D 278, 4457 (2014).
http://dx.doi.org/10.1016/j.physd.2014.03.008
11.
M. Farazmand and G. Haller, “ Computing Lagrangian coherent structures from their variational theory,” Chaos 22, 013128 (2012).
http://dx.doi.org/10.1063/1.3690153
12.
M. Farazmand and G. Haller, “ Erratum and addendum to ‘A variational theory of hyperbolic Lagrangian coherent structures [Physica D 240, 574–598 (2011)]’,” Physica D 241(4), 439441 (2012).
http://dx.doi.org/10.1016/j.physd.2011.09.013
13.
G. Froyland and K. Padberg-Gehle, “ Almost-invariant and finite-time coherent sets: Directionality, duration, and diffusion,” in Ergodic Theory, Open Dynamics, and Coherent Structures ( Springer, 2014), pp. 171216.
14.
A. Hadjighasem and G. Haller, “ Geodesic transport barriers in Jupiter's atmosphere: A video-based analysis,” SIAM Rev. 58(1), 6989 (2016).
http://dx.doi.org/10.1137/140983665
15.
G. Haller, “ An objective definition of a vortex,” J. Fluid Mech. 525, 126 (2005).
http://dx.doi.org/10.1017/S0022112004002526
16.
G. Haller, “ A variational theory of hyperbolic Lagrangian coherent structures,” Physica D 240, 574598 (2011).
http://dx.doi.org/10.1016/j.physd.2010.11.010
17.
G. Haller, “ Lagrangian coherent structures,” Annual Rev. Fluid. Mech. 47, 137162 (2015).
http://dx.doi.org/10.1146/annurev-fluid-010313-141322
18.
G. Haller and F. J. Beron-Vera, “ Coherent Lagrangian vortices: The black holes of turbulence,” J. Fluid Mech. 731, 9 (2013).
http://dx.doi.org/10.1017/jfm.2013.391
19.
G. Haller, A. Hadjighasem, M. Farazmand, and F. Huhn, “ Defining coherent vortices objectively from the vorticity,” J. Fluid Mech. 795, 136173 (2016).
http://dx.doi.org/10.1017/jfm.2016.151
20.
G. Haller and A. Poje, “ Finite time transport in aperiodic flows,” Physica D 119, 352380 (1998).
http://dx.doi.org/10.1016/S0167-2789(98)00091-8
21.
J. Jeong and F. Hussain, “ On the identification of a vortex,” J. Fluid Mech. 285, 6994 (1995).
http://dx.doi.org/10.1017/S0022112095000462
22.
D. Karrasch, F. Huhn, and G. Haller, “ Automated detection of coherent Lagrangian vortices in two-dimensional unsteady flows,” in Proc. R. Soc. London A. 471, 2173 (2015).
23.
G. Lapeyre, B. L. Hua, and B. Legras, “ Comment on ‘Finding finite-time invariant manifolds in two-dimensional velocity fields’,” Chaos 11, 427430 (2001).
http://dx.doi.org/10.1063/1.1374241
24.
G. Lapeyre, P. Klein, and B. L. Hua, “ Does the tracer gradient vector align with the strain eigenvectors in 2D turbulence?,” Phys. Fluids 11, 37293737 (1999).
http://dx.doi.org/10.1063/1.870234
25.
H. J. Lugt, “ The dilemma of defining a vortex,” in Recent Developments in Theoretical and Experimental Fluid Mechanics ( Springer, 1979), pp. 309321.
26.
T. Ma and E. M. Bollt, “ Differential geometry perspective of shape coherence and curvature evolution by finite-time nonhyperbolic splitting,” SIAM J. Appl. Dyn. Syst. 13, 11061136 (2014).
http://dx.doi.org/10.1137/130940633
27.
A. Okubo, “ Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences,” in Deep-Sea Research ( Elsevier, 1970), Vol. 17, pp. 445454.
28.
T. Peacock and J. Dabiri, “ Introduction to focus issue: Lagrangian coherent structures,” Chaos 20, 017501 (2010).
http://dx.doi.org/10.1063/1.3278173
29.
T. Peacock, G. Froyland, and G. Haller, “ Introduction to focus issue: Objective detection of coherent structures,” Chaos 25, 087201087201 (2015).
http://dx.doi.org/10.1063/1.4928894
30.
A. Provenzale, “ Transport by coherent barotropic vortices,” Annual Rev. Fluid. Mech. 31, 5593 (1999).
http://dx.doi.org/10.1146/annurev.fluid.31.1.55
31.
M. Tabor and I. Klapper, “ Stretching and alignment in chaotic and turbulent flows,” Chaos, Solitons Fractals 4, 10311055 (1994).
http://dx.doi.org/10.1016/0960-0779(94)90137-6
32.
C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics ( Springer, 2004).
33.
J. Weiss, “ The dynamics of enstrophy transfer in two-dimensional hydrodynamics,” Physica D 48, 273294 (1991).
http://dx.doi.org/10.1016/0167-2789(91)90088-Q
http://aip.metastore.ingenta.com/content/aip/journal/chaos/26/5/10.1063/1.4951720
Loading
/content/aip/journal/chaos/26/5/10.1063/1.4951720
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/26/5/10.1063/1.4951720
2016-05-25
2016-12-04

Abstract

We define objective Eulerian Coherent Structures (OECSs) in two-dimensional, non-autonomous dynamical systems as the instantaneously most influential material curves. Specifically, OECSs are stationary curves of the averaged instantaneous material stretching-rate or material shearing-rate functionals. From these objective (frame-invariant) variational principles, we obtain explicit differential equations for hyperbolic, elliptic, and parabolic OECSs. As an illustration, we compute OECSs in an unsteady ocean velocity data set. In comparison to structures suggested by other common Eulerian diagnostic tools, we find OECSs to be the correct short-term cores of observed trajectory deformation patterns.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/26/5/1.4951720.html;jsessionid=JQxawGA4a5MLjVxUkXVK8-yX.x-aip-live-02?itemId=/content/aip/journal/chaos/26/5/10.1063/1.4951720&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/26/5/10.1063/1.4951720&pageURL=http://scitation.aip.org/content/aip/journal/chaos/26/5/10.1063/1.4951720'
Right1,Right2,Right3,