Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/26/6/10.1063/1.4954270
1.
T. Y. Liu, H. Y. Yang, L. Kuai, and G. Ming, Zhenci Yanjiu 35(01), 61 (2010).
http://dx.doi.org/10.13702/j.1000-0607.2010.01.004
2.
Y. E. Hu, H. Y. Yang, and F. Hong, World Sci. Technol. 14(02), 1413 (2012).
http://dx.doi.org/10.3969/j.issn.1674-3849.2012.02.016
3.
C. X. Han, J. Wang, Y. Che, B. Deng, Yi. Guo, Y.-M. Guo, and Y.-Y. Liu, Acta Phys. Sin. 59(08), 5880 (2010) (in Chinese).
4.
C. X. Han, J. Wang, B. Deng, Yi. Guo, and Y.-Y. Liu, J. Tianjin Univ. 44(05), 412 (2011).
http://dx.doi.org/10.3969/j.issn.0493-2137.2011.05.007
5.
Z. Tao, J. Wang, and C.-X. Han, CJITWM 32(10), 1403 (2012).
6.
C. Men, J. Wang, B. Deng, X.-L. Wei, Y.-Q. Che, and C.-X. Han, Neurocomputing 79, 12 (2012).
http://dx.doi.org/10.1016/j.neucom.2011.09.022
7.
M. Hou and R. J. Patton, Automatica 34(06), 789 (1998).
http://dx.doi.org/10.1016/S0005-1098(98)00021-1
8.
H. J. Palanthandalam-Madapusi and D. S. Bernstein, Int. J. Adapt. Control Signal Process. 23, 1053 (2009).
http://dx.doi.org/10.1002/acs.1057
9.
B. Kulcsar, J. Bokor, and J. Shinar, Int. J. Robust Nonlinear Control 20(05), 579 (2009).
http://dx.doi.org/10.1002/rnc.1455
10.
S. Kirtikar, H. Palanthandalam-Madapusi, E. Zattoni, and D. S. Bernstein, in Proceedings of the combined 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China, 16–18 December 2009, pp. 18481853.
11.
W. Dazhi and J. G. Harris, in Proceedings of the 2004 International Symposium on Circuits and Systems, Vancouver, Canada (2004), pp. 616618.
12.
A. A. Lazar and L. T. Toth, IEEE Trans. Circuits Syst. 51(10), 2060 (2004).
http://dx.doi.org/10.1109/TCSI.2004.835026
13.
L. Paninski, Y. Ahmadian, D. Ferreira, S. Koyama, K. R. Rad, M. Vidne, J. Vogelstein, and W. Wu, J. Comput. Neurosci. 29, 107 (2009).
http://dx.doi.org/10.1007/s10827-009-0179-x
14.
A. C. Smith and E. N. Brown, Neural Comput. 15, 965 (2003).
http://dx.doi.org/10.1162/089976603765202622
15.
A. Komaee, in Proceedings of the Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA (2010), pp. 16.
16.
K. Yuan, M. Girolami, and M. Niranjan, Neural Comput. 24, 1462 (2012).
http://dx.doi.org/10.1162/NECO_a_00281
17.
A. V. M. Herz, T. Gollisch, C. K. Machens, and D. Jaeger, Science 314, 80 (2006).
http://dx.doi.org/10.1126/science.1127240
18.
F. Wendling, P. Benquet, F. Bartolomei, and V. Jirsa, J. Neurosci. Methods 260, 233 (2016).
http://dx.doi.org/10.1016/j.jneumeth.2015.03.027
19.
H. Kim and S. Shinomoto, Phys. Rev. E 86, 051903 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.051903
20.
A. Buonocore, A. G. Nobile, and L. M. Ricciardi, Adv. Appl. Probab. 19, 784 (1987).
http://dx.doi.org/10.2307/1427102
21.
L. Paninski, A. Haith, and G. Szirtes, J. Comput. Neurosci. 24, 69 (2008).
http://dx.doi.org/10.1007/s10827-007-0042-x
22.
M. N. Shadlen and W. T. Newsome, J. Neurosci. 18, 3870 (1998).
23.
P. Dayan and L. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems ( MIT Press, Cambridge, MA, 2001).
24.
J. W. Pillow, L. Paninski, V. J. Uzzell, E. P. Simoncelli, and E. J. Chichilnisky, J. Neurosci. 25, 11003 (2005).
http://dx.doi.org/10.1523/JNEUROSCI.3305-05.2005
25.
L. Kostal and P. Lansky, Network: Comput. Neural Syst. 17, 193 (2006).
http://dx.doi.org/10.1080/09548980600594165
26.
D. A. Tang, Zhenci Yanjiu 12, 278 (1987).
27.
J. M. Foster and B. P. Sweeney, Br. J. Hosp. Med. 38, 308 (1987).
28.
R. Leake and J. E. Broderick, Integr. Med. 1, 107 (1999).
http://dx.doi.org/10.1016/S1096-2190(98)00033-X
29.
E. Manheimer, A. White, B. Berman, K. Forys, and E. Ernst, Ann. Intern. Med. 142, 651 (2005).
http://dx.doi.org/10.7326/0003-4819-142-8-200504190-00014
30.
K. VanderPloeg and X. Yi, J. Acupunct. Meridian Stud. 2, 26 (2009).
http://dx.doi.org/10.1016/S2005-2901(09)60012-1
31.
Y. M. Cui and L. J. Qi, Int. J. Clin. Acupunct. 9, 317 (1998).
32.
W. Y. Cai, Am. J. Chin. Med. 20, 331 (1992).
http://dx.doi.org/10.1142/S0192415X92000369
33.
J. Ezzo, B. Berman, V. A. Hadhazy, A. R. Jadad, L. Lao, and B. B. Singh, Pain 86, 217 (2000).
http://dx.doi.org/10.1016/S0304-3959(99)00304-8
34.
R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, Neural Comput. 16, 1661 (2004).
http://dx.doi.org/10.1162/089976604774201631
35.
J. B. Walsh, Adv. Appl. Probab. 13, 231 (1981).
http://dx.doi.org/10.2307/1426683
36.
P. Lansky and V. Lanska, Biol. Cybern. 56, 19 (1987).
http://dx.doi.org/10.1007/BF00333064
37.
D. A. McCormick, B. W. Connors, J. W. Lighthall, and D. A. Prince, J. Neurophysiol. 54, 782 (1985).
38.
A. Mason, A. Nicoll, and K. Stratford, J. Neurosci. 11, 72 (1991).
39.
T. W. Troyer and K. D. Miller, Neural Comput. 9, 971 (1997).
http://dx.doi.org/10.1162/neco.1997.9.5.971
40.
T. Shimokawa and S. Shinomoto, Neural Comput. 21, 1931 (2009).
http://dx.doi.org/10.1162/neco.2009.08-08-841
41.
M. Skander, “ A new mathematical framework to understand single neuron computations,” Doctoral dissertation thesis (EPFL, Lausanne, 2004).
http://aip.metastore.ingenta.com/content/aip/journal/chaos/26/6/10.1063/1.4954270
Loading
/content/aip/journal/chaos/26/6/10.1063/1.4954270
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/26/6/10.1063/1.4954270
2016-06-24
2016-12-08

Abstract

Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/26/6/1.4954270.html;jsessionid=Uc1gUcpeEvild2O7ntaCUZyG.x-aip-live-06?itemId=/content/aip/journal/chaos/26/6/10.1063/1.4954270&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/26/6/10.1063/1.4954270&pageURL=http://scitation.aip.org/content/aip/journal/chaos/26/6/10.1063/1.4954270'
Right1,Right2,Right3,