Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/26/8/10.1063/1.4958714
1.
Z. Sun, J. Fu, Y. Xiao, and W. Xu, Chaos 25, 083102 (2015).
http://dx.doi.org/10.1063/1.4927646
2.
C. Bucher and M. Di Paola, Probab. Eng. Mech. 41, 121 (2015).
http://dx.doi.org/10.1016/j.probengmech.2015.06.007
3.
M. Di Paola and R. Santoro, Probab. Eng. Mech. 23, 164 (2008).
http://dx.doi.org/10.1016/j.probengmech.2007.12.029
4.
Q. Han, W. Xu, X. Yue, and Y. Zhang, Commun. Nonlinear Sci. Numer. Simul. 23, 220 (2015).
http://dx.doi.org/10.1016/j.cnsns.2014.11.009
5.
X. Yue, W. Xu, W. Jia, and L. Wang, Physica A 392, 2988 (2013).
http://dx.doi.org/10.1016/j.physa.2013.03.023
6.
M. Grigoriu, Probab. Eng. Mech. 10, 45 (1995).
http://dx.doi.org/10.1016/0266-8920(94)00007-8
7.
C. Proppe, Int. J. Non-Linear Mech. 38, 543 (2003).
http://dx.doi.org/10.1016/S0020-7462(01)00083-X
8.
C. Proppe, Probab. Eng. Mech. 17, 393 (2002).
http://dx.doi.org/10.1016/S0266-8920(02)00036-X
9.
W. Jia and W. Zhu, Physica A 398, 125 (2014).
http://dx.doi.org/10.1016/j.physa.2013.12.009
10.
Y. Zeng and G. Li, Probab. Eng. Mech. 33, 135 (2013).
http://dx.doi.org/10.1016/j.probengmech.2013.03.005
11.
Y. Zeng and W. Zhu, Probab. Eng. Mech. 25, 99 (2010).
http://dx.doi.org/10.1016/j.probengmech.2009.08.003
12.
H. Zhu, G. Er, V. Iu, and K. Kou, Int. J. Non-Linear Mech. 44, 304 (2009).
http://dx.doi.org/10.1016/j.ijnonlinmec.2008.12.003
13.
Y. Chen, B. M. Vinagre, and I. Podlubny, Nonlinear Dyn. 38, 155 (2004).
http://dx.doi.org/10.1007/s11071-004-3752-x
14.
Y. Li, Y. Chen, and I. Podlubny, Automatica 45, 1965 (2009).
http://dx.doi.org/10.1016/j.automatica.2009.04.003
15.
C. Li and G. Peng, Chaos, Solitons Fractals 22, 443 (2004).
http://dx.doi.org/10.1016/j.chaos.2004.02.013
16.
L. Chen and W. Zhu, Nonlinear Dyn. 56, 231 (2009).
http://dx.doi.org/10.1007/s11071-008-9395-6
17.
Z. Huang and X. Jin, J. Sound Vib. 319, 1121 (2009).
http://dx.doi.org/10.1016/j.jsv.2008.06.026
18.
L. Chen, T. Zhao, W. Li, and J. Zhao, Nonlinear Dyn. 83, 529 (2016).
http://dx.doi.org/10.1007/s11071-015-2345-1
19.
P. Spanos and B. Zeldin, J. Eng. Mech. 123, 290 (1997).
http://dx.doi.org/10.1061/(ASCE)0733-9399(1997)123:3(290)
20.
Y. Xu, Y. Li, and D. Liu, Nonlinear Dyn. 83, 2311 (2016).
http://dx.doi.org/10.1007/s11071-015-2482-6
21.
Y. Xu, Y. Li, and D. Liu, J. Comput. Nonlinear Dyn. 9, 031015 (2014).
http://dx.doi.org/10.1115/1.4026068
22.
Y. Xu, Y. Li, D. Liu, W. Jia, and H. Huang, Nonlinear Dyn. 74, 745 (2013).
http://dx.doi.org/10.1007/s11071-013-1002-9
23.
Y. A. Rossikhin and M. V. Shitikova, Appl. Mech. Rev. 63, 010801 (2010).
http://dx.doi.org/10.1115/1.4000563
24.
Y. A. Rossikhin and M. V. Shitikova, Appl. Mech. Rev. 50, 15 (1997).
http://dx.doi.org/10.1115/1.3101682
25.
J. T. Machado, A. M. Galhano, and J. J. Trujillo, Scientometrics 98, 577 (2014).
http://dx.doi.org/10.1007/s11192-013-1032-6
26.
J. T. Machado, V. Kiryakova, and F. Mainardi, Commun. Nonlinear Sci. Numer. Simul. 16, 1140 (2011).
http://dx.doi.org/10.1016/j.cnsns.2010.05.027
27.
L. Chen, F. Hu, and W. Zhu, Fract. Calc. Appl. Anal. 16, 189 (2013).
http://dx.doi.org/10.2478/s13540-013-0013-z
28.
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications ( Academic Press, 1998).
29.
Y. Yang, W. Xu, X. Gu, and Y. Sun, Chaos, Solitons Fractals 77, 190 (2015).
http://dx.doi.org/10.1016/j.chaos.2015.05.029
30.
L. Chen, W. Wang, Z. Li, and W. Zhu, Int. J. Non-Linear Mech. 48, 44 (2013).
http://dx.doi.org/10.1016/j.ijnonlinmec.2012.08.001
31.
Y. Shen, S. Yang, and C. Sui, Chaos, Solitons Fractals 67, 94 (2014).
http://dx.doi.org/10.1016/j.chaos.2014.07.001
32.
Y. Shen, S. Yang, H. Xing, and H. Ma, Int. J. Non-Linear Mech. 47, 975 (2012).
http://dx.doi.org/10.1016/j.ijnonlinmec.2012.06.012
33.
Y. Shen, P. Wei, and S. Yang, Nonlinear Dyn. 77, 1629 (2014).
http://dx.doi.org/10.1007/s11071-014-1405-2
34.
Y. Shen, S. Yang, H. Xing, and G. Gao, Commun. Nonlinear Sci. Numer. Simul. 17, 3092 (2012).
http://dx.doi.org/10.1016/j.cnsns.2011.11.024
35.
M. Di Paola and G. Falsone, J. Appl. Mech. 60, 141 (1993).
http://dx.doi.org/10.1115/1.2900736
36.
M. Di Paola and G. Falsone, Probab. Eng. Mech. 8, 197 (1993).
http://dx.doi.org/10.1016/0266-8920(93)90015-N
37.
G. Cai and Y. Lin, Int. J. Non-Linear Mech. 27, 955 (1992).
http://dx.doi.org/10.1016/0020-7462(92)90048-C
http://aip.metastore.ingenta.com/content/aip/journal/chaos/26/8/10.1063/1.4958714
Loading
/content/aip/journal/chaos/26/8/10.1063/1.4958714
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/26/8/10.1063/1.4958714
2016-07-18
2016-09-26

Abstract

The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/26/8/1.4958714.html;jsessionid=cu8RUsmCd_AqgMhq41p1kPg_.x-aip-live-03?itemId=/content/aip/journal/chaos/26/8/10.1063/1.4958714&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/26/8/10.1063/1.4958714&pageURL=http://scitation.aip.org/content/aip/journal/chaos/26/8/10.1063/1.4958714'
Right1,Right2,Right3,