Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/26/8/10.1063/1.4958919
1.
T. Hikihara, P. Holmes, T. Kambe, and G. Rega, “ Introduction to the focus issue: Fifty years of chaos: Applied and theoretical,” Chaos 22, 047501 (2012).
http://dx.doi.org/10.1063/1.4769035
2.
N. J. Corron, J. N. Blakely, and M. T. Stahl, “ A matched filter for chaos,” Chaos 20, 023123 (2010).
http://dx.doi.org/10.1063/1.3432557
3.
J. C. Sprott, “ A new class of chaotic circuit,” Phys. Lett. A 266, 1923 (2000).
http://dx.doi.org/10.1016/S0375-9601(00)00026-8
4.
C. Stegemann, H. A. Albuquerque, and R. M. Rubinger et al., “ Lyapunov exponent diagrams of a 4-dimensional Chua system,” Chaos 21, 033105 (2011).
http://dx.doi.org/10.1063/1.3615232
5.
W. K. S. Tang, G. Q. Zhong, and K. F. Man, “ Generation of N-scroll attractors via sine function,” IEEE Trans. Circuits Syst. I: Fundam. Theor. Appl. 48(11), 13691372 (2001).
http://dx.doi.org/10.1109/81.964432
6.
J. , X. Yu, and G. Chen, “ Switching control for multi-scroll chaos generation: An overview,” in International Conference on Physics and Control (2003), Vol. 2, pp. 420428.
7.
G. Chen and T. Ueta, “ Yet another chaotic attractor,” Int. J. Bifurcation Chao 9(7), 14651466 (1999).
http://dx.doi.org/10.1142/S0218127499001024
8.
S. Čelikovský and G. Chen, “ On a generalized Lorenz canonical form of chaotic systems,” Int. J. Bifurcation Chaos 12(8), 17891812 (2002).
http://dx.doi.org/10.1142/S0218127402005467
9.
T. Zhou and Y. Tang, “ Chen attractor exists,” Int. J. Bifurcation Chaos 14(9), 31673177 (2004).
http://dx.doi.org/10.1142/S0218127404011296
10.
J. , “ Generating multi-scroll chaotic attracters: Theories, methods and applications,” Int. J. Bifurcation Chaos 16(4), 775858 (2006).
http://dx.doi.org/10.1142/S0218127406015179
11.
A. Radwan, A. M. Soloman, and A. S. Elwakil, “ 1-D digitally-controlled multi-scroll chaos generator,” Int. J. Bifurcation Chaos 17(1), 227242 (2007).
http://dx.doi.org/10.1142/S0218127407017288
12.
T. Gao, G. Chen, and Z. Chen et al., “ The generation and circuit implementation of a new hyper-chaos based upon Lorenz system,” Phys. Lett. A 361, 7886 (2007).
http://dx.doi.org/10.1016/j.physleta.2006.09.042
13.
Q. H. Alsafasfeh and M. S. Al-Arni, “ A new chaotic behavior from Lorenz and Rössler systems and its electronic circuit implementation,” Circuits Syst. 2, 101105 (2011).
http://dx.doi.org/10.4236/cs.2011.22015
14.
S. Yu, J. , and G. Chen, “ Multifolded torus chaotic attractors: Design and implementation,” Chaos 17, 013118 (2007).
http://dx.doi.org/10.1063/1.2559173
15.
C. Zhang and S. Yu, “ Generation of grid multi-scroll chaotic attractors via switching piecewise linear control,” Phys. Lett. A 374(30), 30293037 (2010).
http://dx.doi.org/10.1016/j.physleta.2010.05.043
16.
C. Zhang, S. Yu, and J. et al., “ Generating multi-wing butterfly attractors from the piecewise-linear Chen system,” in 9th International Conference for Young Computer Scientist (2008), Vol. 18–21, pp. 28402845.
17.
D. Younesian and H. Norouzi, “ Chaos prediction in nonlinear viscoelastic plates subjected to subsonic flow and external load using extended Melnikov's method,” Nonlinear Dyn. 84, 1163 (2016).
http://dx.doi.org/10.1007/s11071-015-2561-8
18.
T. He and S. Habib, “ Chaos and noise,” Chaos 23, 033123 (2013).
http://dx.doi.org/10.1063/1.4813864
19.
E. Bogomolny, N. Djellali, and R. Dubertrand et al., “ Trace formula for dielectric cavities. II. Regular, pseudointegrable, and chaotic examples,” Phys. Rev. E 83, 036208 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.036208
20.
L. Salasnich, “ Colored noise in quantum chaos,” Phys. Rev. E 71, 047202 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.047202
21.
U. S. Freitas, C. Letellier, and L. A. Aguirre, “ Failure in distinguishing colored noise from chaos using the ‘noise titration’ technique,” Phys. Rev. E 79, 035201 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.035201
22.
B. Kia, S. Kia, and J. F. Lindner et al., “ Noise tolerant spatiotemporal chaos computing,” Chaos 24, 043110 (2014).
http://dx.doi.org/10.1063/1.4897168
23.
D. Pazó, J. M. López, R. Gallego, and M. A. Rodríguez, “ Synchronizing spatio-temporal chaos with imperfect models: A stochastic surface growth picture,” Chaos 24, 043115 (2014).
http://dx.doi.org/10.1063/1.4898385
24.
Y. S. Weinstein and L. Viola, “ Generalized entanglement as a natural framework for exploring quantum chaos,” Physics 76(5), 746752 (2006).
25.
L. Minati, “ Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects,” Chaos 24, 043108 (2014).
http://dx.doi.org/10.1063/1.4896815
http://aip.metastore.ingenta.com/content/aip/journal/chaos/26/8/10.1063/1.4958919
Loading
/content/aip/journal/chaos/26/8/10.1063/1.4958919
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/26/8/10.1063/1.4958919
2016-07-20
2016-09-26

Abstract

We propose a systematic methodology for creating 21-scroll chaotic attractors from a simple three-dimensional system, which is named as the translation chaotic system. It satisfies the condition 0, while the Chua system satisfies 0. In this paper, we also propose a successful (an effective) design and an analytical approach for constructing 21-scrolls, the translation transformation principle. Also, the dynamics properties of the system are studied in detail. MATLAB simulation results show very sophisticated dynamical behaviors and unique chaotic behaviors of the system. It provides a new approach for 21-scroll attractors. Finally, to explore the potential use in technological applications, a novel block circuit diagram is also designed for the hardware implementation of 1 3, 5, and 7scroll attractors via switching the switches. Translation chaotic system has the merit of convenience and high sensitivity to initial values, emerging potentials in future engineering chaos design.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/26/8/1.4958919.html;jsessionid=P99PxXznWhJtXyWNegjEW2Mf.x-aip-live-06?itemId=/content/aip/journal/chaos/26/8/10.1063/1.4958919&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/26/8/10.1063/1.4958919&pageURL=http://scitation.aip.org/content/aip/journal/chaos/26/8/10.1063/1.4958919'
Right1,Right2,Right3,