Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/26/8/10.1063/1.4958920
1.
T. Nagatani, Physica A 264, 581 (1999).
http://dx.doi.org/10.1016/S0378-4371(98)00466-X
2.
G. Peng, F. Nie, B. Cao, and C. Liu, Nonlinear Dyn. 67, 1811 (2012).
http://dx.doi.org/10.1007/s11071-011-0107-2
3.
S. Succi, The Lattice-Boltzmann Equation ( Oxford University Press, Oxford, 2001).
4.
L. Wang, B. Shi, and Z. Chai, Phys. Rev. E 92, 043311 (2015).
http://dx.doi.org/10.1103/PhysRevE.92.043311
5.
Q. Yu, V. Vegh, F. Liu, and I. Turner, PLoS One 10, e0132952 (2015).
http://dx.doi.org/10.1371/journal.pone.0132952
6.
R. K. Saxena, R. Garra, and E. Orsingher, Commun. Nonlinear Sci. Numer. Simulat. 27, 1 (2015).
http://dx.doi.org/10.1016/j.cnsns.2015.02.021
7.
J. Hristov, Eur. Phys. J. Spec. Top. 193, 229 (2011).
http://dx.doi.org/10.1140/epjst/e2011-01394-2
8.
V. E. Tarasov, Physica A 421, 330 (2015).
http://dx.doi.org/10.1016/j.physa.2014.11.031
9.
H. Xiao, Y. Ma, and C. Li, J. Vib. Control 20, 964 (2014).
http://dx.doi.org/10.1177/1077546312473769
10.
C. Li, L. Ma, and H. Xiao, in ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, Portland, Oregon, USA (2013), Paper No. DETC2013–12835.
11.
H. Sun, W. Chen, C. Li, and Y. Chen, “ Finite difference schemes for variable–order time fractional diffusion equation,” Int. J. Bifurcation Chaos 22, 1250085 (2012).
http://dx.doi.org/10.1142/S021812741250085X
12.
X. Zhao, Z. Z. Sun, and Z. P. Hao, SIAM J. Sci. Comput. 36, A2865 (2014).
http://dx.doi.org/10.1137/140961560
13.
C. Li and F. Zeng, Numerical Methods for Fractional Calculus ( Chapman and Hall/CRC, Boca Raton, USA, 2015).
14.
F. Liu, P. Zhuang, and Q. Liu, Numerical Methods of Fractional Partial Differential Equations and Applications ( Science Press, Beijing, China, 2015) (in Chinese).
15.
S. Hilger, Ein Maβkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten (Ph.D. thesis, Universität Würzburg, Würzburg, Germany, 1988).
16.
R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods, and Applications ( CRC Press, 2000).
17.
M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales ( Birkhäuser, Boston, Mass, USA, 2003).
18.
F. M. Atici and P. W. Eloe, Int. J. Differ. Equ. 2, 165 (2007).
19.
F. M. Atici and P. W. Eloe, Proc. Am. Math. Soc. 137, 981 (2009).
http://dx.doi.org/10.1090/S0002-9939-08-09626-3
20.
F. M. Atici and S. Sengül, J. Math. Anal. Appl. 369, 1 (2010).
http://dx.doi.org/10.1016/j.jmaa.2010.02.009
21.
G. C. Wu and D. Baleanu, Nonlinear Dyn. 75, 283 (2014).
http://dx.doi.org/10.1007/s11071-013-1065-7
22.
G. C. Wu and D. Baleanu, Sign. Proc. 102, 96 (2014).
http://dx.doi.org/10.1016/j.sigpro.2014.02.022
23.
M. T. Holm, Comput. Math. Appl. 62, 1591 (2011).
http://dx.doi.org/10.1016/j.camwa.2011.04.019
24.
C. S. Goodrich, J. Differ. Equ. Appl. 18, 397 (2012).
http://dx.doi.org/10.1080/10236198.2010.503240
25.
T. Abdeljawad, Discrete Dyn. Nat. Soc. 2013, 406910.
26.
W. Lv, Adv. Diff. Equ. 2012, 163.
http://dx.doi.org/10.1186/1687-1847-2012-163
27.
F. Chen, Electron. J. Qual. Theor. Diff. Equ. 39, 1 (2011).
28.
F. Chen, X. Luo, and Y. Zhou, Adv. Differ. Equ. 2011, 713201.
http://dx.doi.org/10.1155/2011/713201
29.
F. Chen, J. Comput. Complex. Appl. 1, 22 (2015).
30.
C. S. Goodrich and A. C. Peterson, Discrete Fractional Calculus ( Springer, 2015).
31.
G. C. Wu, D. Baleanu, Z. G. Deng, and S. D. Zeng, Physica A 438, 335 (2015).
http://dx.doi.org/10.1016/j.physa.2015.06.024
32.
N. R. O. Bastos, R. A. C. Ferreira, and D. F. M. Torres, Sign. Proc. 91, 513 (2011).
http://dx.doi.org/10.1016/j.sigpro.2010.05.001
33.
T. Abdeljawad, Comput. Math. Appl. 62, 1602 (2011).
http://dx.doi.org/10.1016/j.camwa.2011.03.036
34.
D. Mozyrska and E. Girejko, “ Overview of fractional h-difference operators,” Adv. Harmon. Anal. Oper. Theor. 229, 253 (2013).
http://dx.doi.org/10.1007/978-3-0348-0516-2_14
35.
F. M. Atici and P. W. Eloe, Rock. Mout. J. Math. 41, 353 (2011).
http://dx.doi.org/10.1216/RMJ-2011-41-2-353
36.
T. Abdeljawad and F. M. Atici, Abstr. Appl. Anal. 2012, 406757.
http://dx.doi.org/10.1155/2012/406757
37.
T. Abdeljawad, Adv. Differ. Equ. 2013, 36.
http://dx.doi.org/10.1186/1687-1847-2013-36
38.
M. Wyrwas, E. Pawluszewicz, and E. Girejko, Kybernetika 51, 112 (2015).
http://dx.doi.org/10.14736/kyb-2015-1-0112
39.
F. Liu, V. Anh, and I. Turner, J. Comput. Appl. Math. 166, 209 (2004).
http://dx.doi.org/10.1016/j.cam.2003.09.028
40.
M. Chen, W. Deng, and Y. Wu, Appl. Numer. Math. 70, 22 (2013).
http://dx.doi.org/10.1016/j.apnum.2013.03.006
41.
G. C. Wu and D. Baleanu, Nonlinear Dyn. 80, 281 (2015).
http://dx.doi.org/10.1007/s11071-014-1867-2
42.
J. S. Duan, Appl. Math. Comput. 217, 6337 (2011).
http://dx.doi.org/10.1016/j.amc.2011.01.007
43.
J. S. Duan, Appl. Math. Comput. 216, 1235 (2010).
http://dx.doi.org/10.1016/j.amc.2010.02.015
44.
W. A. Brock and A. G. Malliaris, Differential Equations, Stability and Chaos in Dynamic Economics ( North Holland, 1992).
45.
D. A. Sanchez, Ordinary Differential Equations and Stability Theory: An Introduction ( Dover Publications, 2012).
http://aip.metastore.ingenta.com/content/aip/journal/chaos/26/8/10.1063/1.4958920
Loading
/content/aip/journal/chaos/26/8/10.1063/1.4958920
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/26/8/10.1063/1.4958920
2016-08-02
2016-09-27

Abstract

A Riesz difference is defined by the use of the Riemann–Liouville differences on time scales. Then the definition is considered for discrete fractional modelling. A lattice fractional equation method is proposed among which the space variable is defined on discrete domains. Finite memory effects are introduced into the lattice system and the numerical formulae are given. Adomian decomposition method is adopted to solve the fractional partial difference equations numerically.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/26/8/1.4958920.html;jsessionid=a9ThApyj-3_kFoAElUa63GFk.x-aip-live-06?itemId=/content/aip/journal/chaos/26/8/10.1063/1.4958920&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/26/8/10.1063/1.4958920&pageURL=http://scitation.aip.org/content/aip/journal/chaos/26/8/10.1063/1.4958920'
Right1,Right2,Right3,