Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/26/8/10.1063/1.4959149
1.
I. Podlubny, Fractional Differential Equations ( Academic, London, 1998).
2.
R. Caponetto, G. Dongola, L. Fortuna, and I. Petras, Fractional Order Systems: Modeling and Control Applications ( World Scientific, New Jersey, 2010).
3.
S. Das, Functional Fractional Calculus for System Identification and Controls ( Springer-Verlag, Berlin, 2008).
4.
I. Petras, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation ( Higher Education Press, Beijing, 2011).
5.
A. K. Golmankhaneh, A. K. Golmankhaneh, and D. Baleanu, “ On nonlinear fractional Klein-Gordon equation,” Signal Process. 91(3), 446451 (2011).
http://dx.doi.org/10.1016/j.sigpro.2010.04.016
6.
A. B. Malinowska and D. F. M. Torres, “ Fractional calculus of variations for a combined Caputo derivative,” Fractional Calculus Appl. Anal. 14(4), 523537 (2011).
http://dx.doi.org/10.2478/s13540-011-0032-6
7.
Y. J. Shen, P. Wei, and S. P. Yang, “ Primary resonance of fractional-order van der Pol oscillator,” Nonlinear Dyn. 77, 16291642 (2014).
http://dx.doi.org/10.1007/s11071-014-1405-2
8.
Y. Xu, Y. G. Li, D. Liu, W. T. Jia, and H. Huang, “ Responses of Duffing oscillator with fractional damping and random phase,” Nonlinear Dyn. 74(3), 745753 (2013).
http://dx.doi.org/10.1007/s11071-013-1002-9
9.
C. P. Li and W. H. Deng, “ Remarks on fractional derivatives,” Appl. Math. Comput. 187(2), 777784 (2007).
http://dx.doi.org/10.1016/j.amc.2006.08.163
10.
F. H. Zeng and C. P. Li, “ High-order finite difference methods for time-fractional subdiffusion equation,” Chin. J. Comput. Phys. 30(4), 491500 (2013); available at http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSWL201304002.htm.
11.
A. Y. T. Leung, Z. J. Guo, and H. X. Yang, “ The residue harmonic balance for fractional order van der Pol like oscillators,” J. Sound Vib. 331, 11151126 (2012).
http://dx.doi.org/10.1016/j.jsv.2011.10.023
12.
Y. G. Yang, W. Xu, X. D. Gu et al., “ Stochastic response of a class of self-excited systems with Caputo-type fractional derivative driven by Gaussian white noise,” Chaos, Solitons Fractals 77, 190204 (2015).
http://dx.doi.org/10.1016/j.chaos.2015.05.029
13.
L. C. Chen, T. L. Zhao, W. Li, and J. Zhao, “ Bifurcation control of bounded noise excited Duffing oscillator by a weakly fractional-order PIλDμ feedback controller,” Nonlinear Dyn. 83(1–2), 529539 (2016).
http://dx.doi.org/10.1007/s11071-015-2345-1
14.
Y. Xu, H. Wang, Y. Li et al., “ Image encryption based on synchronization of fractional chaotic systems,” Commun. Nonlinear Sci. Numer. Simul. 19(10), 37353744 (2014).
http://dx.doi.org/10.1016/j.cnsns.2014.02.029
15.
A. K. Golmankhaneh, A. K. Golmankhaneh, and D. Baleanu, “ Homotopy perturbation method for solving a system of Schrödinger-Korteweg-de Vries equations,” Rom. Rep. Phys. 63(3), 609623 (2011); available at http://www.rrp.infim.ro/2011_63_3/01-Baleanu-kdvhpm-4.pdf.
16.
X. H. Li, J. Y. Hou, and J. F. Chen, “ An analytical method for Mathieu oscillator based on method of variation of parameter,” Commun. Nonlinear Sci. Numer. Simul. 37, 326353 (2016).
http://dx.doi.org/10.1016/j.cnsns.2016.02.003
17.
A. H. Nayfeh, Nonlinear Oscillations ( Wiley, New York, 1973).
18.
X. H. Li and J. Y. Hou, “ Bursting phenomenon in a piecewise mechanical system with parameter perturbation in stiffness,” Int. J. Non-Linear Mech. 81, 165176 (2016).
http://dx.doi.org/10.1016/j.ijnonlinmec.2016.01.014
19.
J. A. Sanders, F. Verhulst, and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, 2nd ed. ( Springer-Verlag, New York, 2007).
20.
A. Y. T. Leung and S. K. Chui, “ Nonlinear vibration of coupled Duffing oscillators by an improved incremental harmonic balance method,” J. Sound Vib. 181(4), 619633 (1995).
http://dx.doi.org/10.1006/jsvi.1995.0162
21.
P. J. Ju and X. Xue, “ Global residue harmonic balance method to periodic solutions of a class of strongly nonlinear oscillators,” Appl. Math. Modell. 38(24), 61446152 (2014).
http://dx.doi.org/10.1016/j.apm.2014.05.026
22.
M. Heydari, G. B. Loghmani, and S. M. Hosseini, “ An improved piecewise variational iteration method for solving strongly nonlinear oscillators,” Comput. Appl. Math. 34(1), 215249 (2015).
http://dx.doi.org/10.1007/s40314-014-0113-3
23.
Y. J. Shen, S. P. Yang, and X. D. Liu, “ Nonlinear dynamics of a spur gear pair with time-varying stiffness and backlash based on incremental harmonic balance method,” Int. J. Mech. Sci. 48(11), 12561263 (2006).
http://dx.doi.org/10.1016/j.ijmecsci.2006.06.003
24.
S. L. Lau and W. S. Zhang, “ Nonlinear vibrations of piecewise-linear systems by incremental harmonic balance method,” ASME J. Appl. Mech. 59, 153160 (1992).
http://dx.doi.org/10.1115/1.2899421
25.
H. Li, J. Cao, and C. Li, “ High-order approximation to Caputo derivatives and Caputo-type advection–diffusion equations (III),” J. Comput. Appl. Math. 299, 159 (2016).
http://dx.doi.org/10.1016/j.cam.2015.11.037
26.
T. Odzijewicz, A. B. Malinowska, and D. F. M. Torres, “ Fractional variational calculus with classical and combined Caputo derivatives,” Nonlinear Anal. 75(3), 15071515 (2012).
http://dx.doi.org/10.1016/j.na.2011.01.010
27.
Y. J. Shen, S. P. Yang, H. J. Xing et al., “ Primary resonance of Duffing oscillator with fractional-order derivative,” Commun. Nonlinear Sci. Numer. Simul. 17(7), 30923100 (2012).
http://dx.doi.org/10.1016/j.cnsns.2011.11.024
28.
Y. J. Shen, S. P. Yang, H. J. Xing et al., “ Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives,” Int. J. Non-Linear Mech. 47(9), 975983 (2012).
http://dx.doi.org/10.1016/j.ijnonlinmec.2012.06.012
http://aip.metastore.ingenta.com/content/aip/journal/chaos/26/8/10.1063/1.4959149
Loading
/content/aip/journal/chaos/26/8/10.1063/1.4959149
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/26/8/10.1063/1.4959149
2016-08-02
2016-09-25

Abstract

In this paper, the computation schemes for periodic solutions of the forced fractional-order Mathieu-Duffing equation are derived based on incremental harmonic balance (IHB) method. The general forms of periodic solutions are founded by the IHB method, which could be useful to obtain the periodic solutions with higher precision. The comparisons of the approximate analytical solutions by the IHB method and numerical integration are fulfilled, and the results certify the correctness and higher precision of the solutions by the IHB method. The dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation is investigated by the IHB method. Then, the effects of the excitation frequency, fractional order, fractional coefficient, and nonlinear stiffness coefficient on the complex dynamical behaviors are analyzed. At last, the detailed results are summarized and the conclusions are made, which present some useful information to analyze and/or control the dynamical response of this kind of system.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/26/8/1.4959149.html;jsessionid=rZXrIAsH3dV7xopNGaSMf4Fj.x-aip-live-02?itemId=/content/aip/journal/chaos/26/8/10.1063/1.4959149&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/26/8/10.1063/1.4959149&pageURL=http://scitation.aip.org/content/aip/journal/chaos/26/8/10.1063/1.4959149'
Right1,Right2,Right3,