Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/26/9/10.1063/1.4954038
1.
Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence ( Springer, Berlin, 1984).
2.
S. H. Strogatz, Physica D 143, 1 (2000).
http://dx.doi.org/10.1016/S0167-2789(00)00094-4
3.
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences ( Cambridge University Press, 2003).
4.
S. H. Strogatz, Sync ( Hyperion, New York, 2003).
5.
J. A. Acebron, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, Rev. Mod. Phys. 77, 137 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.137
6.
F. Dörfler and F. Bullo, Automatica 50, 1539 (2014).
http://dx.doi.org/10.1016/j.automatica.2014.04.012
7.
F. A. Rodrigues, T. K. DM. Peron, P. Ji, and J. Kurths, Phys. Rep. 610, 1 (2016).
http://dx.doi.org/10.1016/j.physrep.2015.10.008
8.
G. B. Ermentrout, J. Math. Biol. 23, 55 (1985).
http://dx.doi.org/10.1007/BF00276558
9.
H. Sakaguchi, S. Shinomoto, and Y. Kuramoto, Prog. Theor. Phys. 77, 1005 (1987).
http://dx.doi.org/10.1143/PTP.77.1005
10.
H. Sakaguchi, S. Shinomoto, and Y. Kuramoto, Prog. Theor. Phys. 79, 1069 (1988).
http://dx.doi.org/10.1143/PTP.79.1069
11.
S. H. Strogatz and R. E. Mirollo, Physica D 31, 143 (1988).
http://dx.doi.org/10.1016/0167-2789(88)90074-7
12.
S. H. Strogatz and R. E. Mirollo, J. Phys. A: Math. Gen. 21, L699 (1988).
http://dx.doi.org/10.1088/0305-4470/21/13/005
13.
H. Daido, Phys. Rev. Lett. 61, 231 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.231
14.
G. B. Ermentrout, SIAM J. Appl. Math. 52, 1665 (1992).
http://dx.doi.org/10.1137/0152096
15.
J. Paullet and G. B. Ermentrout, SIAM J. Appl. Math. 54, 1720 (1994).
http://dx.doi.org/10.1137/S0036139993250683
16.
P. Östborn, Phys. Rev. E 66, 016105 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.016105
17.
P. Östborn, Phys. Rev. E 70, 016120 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.016120
18.
H. Hong, H. Park, and M. Y. Choi, Phys. Rev. E 72, 036217 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.036217
19.
H. Hong, H. Chaté, H. Park, and L.-H. Tang, Phys. Rev. Lett. 99, 184101 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.184101
20.
P. Östborn, Phys. Rev. E 79, 051114 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.051114
21.
T. Lee, H. Tam, G. Refael, J. Rogers, and M. Cross, Phys. Rev. E 82, 036202 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.036202
22.
M. J. Panaggio and D. M. Abrams, Nonlinearity 28, R67 (2015).
http://dx.doi.org/10.1088/0951-7715/28/3/R67
23.
D. Mehta, N. Daleo, F. Dörfler, and J. Hauenstein, Chaos 25, 053103 (2015).
http://dx.doi.org/10.1063/1.4919696
24.
P. G. Drazin, Nonlinear Systems ( Cambridge University Press, 1992).
http://aip.metastore.ingenta.com/content/aip/journal/chaos/26/9/10.1063/1.4954038
Loading
/content/aip/journal/chaos/26/9/10.1063/1.4954038
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/26/9/10.1063/1.4954038
2016-06-23
2016-12-11

Abstract

We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/26/9/1.4954038.html;jsessionid=ZbnGFp_zQMCpSTJkEuvfbNGF.x-aip-live-06?itemId=/content/aip/journal/chaos/26/9/10.1063/1.4954038&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/26/9/10.1063/1.4954038&pageURL=http://scitation.aip.org/content/aip/journal/chaos/26/9/10.1063/1.4954038'
Right1,Right2,Right3,