Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. M. Reppert and D. R. Weaver, Nature 418, 935 (2002).
E. D. Herzog, Nat. Rev. Neurosci. 8, 790 (2007).
S. Yamaguchi, H. Isejima, T. Matsuo, R. Okura, K. Yagita, M. Kobayashi, and H. Okamura, Science 302, 1408 (2003).
D. K. Welsh, D. E. Logothetis, M. Meister, and S. M. Reppert, Neuron 14, 697 (1995).
S. Honma, W. Nakamura, T. Shirakawa, and K.-I. Honma, Neurosci. Lett. 358, 173 (2004).
S. H. Strogatz, J. Math. Bio. 25, 327 (1987).
A. Gundel and M. B. Spencer, Chronobiol. Int. 9, 148 (1992).
A. Gundel and M. B. Spencer, J. Bio. Rhythms 14, 517 (1999).
Y. Yamaguchi, T. Suzuki, Y. Mizoro, H. Kori, K. Okada, Y. Chen, J.-M. Fustin, F. Yamazaki, N. Mizuguchi, J. Zhang et al., Science 342, 85 (2013).
D. Gonze, S. Bernard, C. Waltermann, A. Kramer, and H. Herzel, Biophys. J. 89, 120 (2005).
S. Bernard, D. Gonze, B. Čajavec, H. Herzel, and A. Kramer, PLoS Comput. Biol. 3, e68 (2007).
M. Hafner, H. Koeppl, and D. Gonze, PLoS Comput. Biol. 8, e1002419 (2012).
J. Myung, S. Hong, D. DeWoskin, E. De Schutter, D. B. Forger, and T. Takumi, Proc. Natl. Acad. Sci. 112, E3920 (2015).
D. DeWoskin, J. Myung, M. D. Belle, H. D. Piggins, T. Takumi, and D. B. Forger, Proc. Natl. Acad. Sci. 112, E3911 (2015).
D. B. Forger and C. S. Peskin, Proc. Natl. Acad. Sci. U. S. A. 102, 321 (2005).
D. Forger, D. Gonze, D. Virshup, and D. K. Welsh, J. Biol. Rhythms 22, 200 (2007).
E. Ott and T. M. Antonsen, Chaos 18, 037113 (2008).
E. Ott and T. M. Antonsen, Chaos 19, 023117 (2009).
T. Antonsen, Jr., R. Faghih, M. Girvan, E. Ott, and J. Platig, Chaos 18, 037112 (2008).
L. M. Childs and S. H. Strogatz, Chaos 18, 043128 (2008).
R. L. Sack, A. J. Lewy, M. L. Blood, L. D. Keith, and H. Nakagawa, J. Clin. Endocrinol. Metab. 75, 127 (1992).
J. Mills, J. Physiol. 174, 217 (1964).
S. S. Campbell, D. Dawson, and J. Zulley, Sleep 16, 638 (1993).
B. Middleton, J. Arendt, and B. Stone, J. Sleep Res. 5, 69 (1996).
C. A. Czeisler, J. F. Duffy, T. L. Shanahan, E. N. Brown, J. F. Mitchell, D. W. Rimmer, J. M. Ronda, E. J. Silva, J. S. Allan, J. S. Emens et al., Science 284, 2177 (1999).
S. A. Brown, F. Fleury-Olela, E. Nagoshi, C. Hauser, C. Juge, C. A. Meier, R. Chicheportiche, J.-M. Dayer, U. Albrecht, and U. Schibler, PLoS Biol 3, e338 (2005).
J. A. Mohawk, C. B. Green, and J. S. Takahashi, Ann. Rev. Neurosci. 35, 445 (2012).
Z. Boulos, S. S. Campbell, A. J. Lewy, M. Terman, D.-J. Dijk, and C. I. Eastman, J. Biol. Rhythms 10, 167 (1995).
J. Aschoff, K. Hoffmann, H. Pohl, and R. Wever, Chronobiologia 2, 23 (1974).
P. J. Mitchell, E. K. Hoese, L. Liu, L. F. Fogg, and C. I. Eastman, J. Biol. Rhythms 12, 5 (1997).
T. L. Shanahan, R. E. Kronauer, J. F. Duffy, G. H. Williams, and C. A. Czeisler, J. Biol. Rhythms 14, 237 (1999).
T. H. Monk, D. J. Buysse, J. Carrier, and D. J. Kupfer, J. Sleep Res. 9, 101 (2000).
T. Takahashi, M. Sasaki, H. Itoh, H. Sano, W. Yamadera, M. Ozone, K. Obuchi, H. Nishimura, and N. Matsunaga, Psychiatry Clin. Neurosci. 53, 257 (1999).
T. Takahashi, M. Sasaki, H. Itoh, W. Yamadera, M. Ozone, K. Obuchi, N. Matsunaga, H. Sano, and K.-I. Hayashida, Psychiatry Clin. Neurosci. 55, 275 (2001).
R. A. Wever, The Circadian System of Man: Results of Experiments Under Temporal Isolation ( Springer Science & Business Media, 2013).
We also explored cases with an average oscillator period of 24.2 h consistent with Ref. 25. However, with this smaller period it was not possible to find a set of the other parameters of the model system (K, F, Δ) that simultaneously yielded results approximately consistent with empirical studies. If the 24.2 h results of Ref. 25 actually applies, the above may indicate that our model is too simple to be trusted for quantitative prediction.
J. Mills, D. Minors, and J. Waterhouse, J. Physiol. 285, 455 (1978).
A. Gundel and H. M. Wegmann, Chronobiol. Int. 6, 147 (1989).
P. So, T. B. Luke, and E. Barreto, Physica D 267, 16 (2014).
D. Pazó and E. Montbrió, Phys. Rev. X 4, 011009 (2014).

Data & Media loading...


Article metrics loading...



Cells in the brain's Suprachiasmatic Nucleus (SCN) are known to regulate circadian rhythms in mammals. We model synchronization of SCN cells using the forced Kuramoto model, which consists of a large population of coupled phase oscillators (modeling individual SCN cells) with heterogeneous intrinsic frequencies and external periodic forcing. Here, the periodic forcing models diurnally varying external inputs such as sunrise, sunset, and alarm clocks. We reduce the dimensionality of the system using the ansatz of Ott and Antonsen and then study the effect of a sudden change of clock phase to simulate cross-time-zone travel. We estimate model parameters from previous biological experiments. By examining the phase space dynamics of the model, we study the mechanism leading to the difference typically experienced in the severity of jet-lag resulting from eastward and westward travel.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd